計算:
5
1
(|2-x|+|sinx|)dx.
考點:定積分
專題:導數(shù)的綜合應(yīng)用
分析:利用x的范圍,將被積函數(shù)的絕對值去掉.
解答: 解:
5
1
(|2-x|+|sinx|)dx=
2
1
(2-x)dx+
5
2
(x-2)dx
+
π
1
sinxdx+
5
π
(-sinx)dx

=(2x-
1
2
x2)|
 
2
1
+(
1
2
x2-2x|
 
5
2
+(-cosx)|
 
π
1
+cosx|
 
5
π

=4-2-2+
1
2
+
25
2
-10-2+4+1+cos1+cos5+1
=7+cos1+cos5.
點評:本題考查了定積分的計算以及定積分的運算法則的運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2x,x≤-1
2x+2,x>-1
,則滿足f(a)≥2的實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,S7=49,5是a1和a5的等差中項.
(1)求an與Sn
(2)證明:當n≥2時,有
1
S1
+
1
S2
+…+
1
Sn
7
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
acos2
ωx
2
+
1
2
asinωx-
3
2
a(ω>0,a>0在一個周期內(nèi)的圖象如圖所示,其中點A為圖象上的最高點,點B,C為圖象與x軸的兩個相鄰交點,且△ABC是邊長為4的正三角形.
(1)求ω與a的值;
(2)若f(x0)=
8
3
5
,且x0∈(-
10
3
,
2
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的面積為2,且滿足0<
AB
AC
≤4,設(shè)
AB
AC
的夾角為θ.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=2sin2
π
4
+θ)-
3
cos2θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(
π
6
+α)=
3
3
,求sin(
π
3
-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,已知
a
3
cosA
=
c
sinC
=
a
sinA

(1)求A的大;
(2)若a=6,求b+c的取值范圍.

查看答案和解析>>

同步練習冊答案