設集合A=[0,), B=[,1], 函數(shù)f(x)=,若x0∈A, 且f[f(x0)]∈A,則x0的取值范圍是(    )。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設集合A=[0,
1
2
),B=[
1
2
,1],函數(shù)f (x)=
x+
1
2
,x∈A
2(1-x),x∈B
,若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是( 。
A、(0,
1
4
]
B、[
1
4
,
1
2
]
C、(
1
4
1
2
D、[0,
3
8
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={0,2,4,6},B={1,3,5,7},從集合A,B中各取2個元素組成沒有重復數(shù)字的四位數(shù).
(1)可組成多少個這樣的四位數(shù)?
(2)有多少個是2的倍數(shù)或是5的倍數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•惠州模擬)設n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2
,
(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)
x-1
,
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n為正整數(shù),規(guī)定f1(x)=f(x),fn+1(x)=f(fn(x)),已知f(x)=
2(1-x),0≤x≤1
x-1,
 1<x≤2

(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x.

查看答案和解析>>

同步練習冊答案