若f(x)滿足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,則f(144)=( 。
分析:利用144=9×16,根據(jù)f(ab)=f(a)+f(b),由f(2)和f(3)可求f(9)和f(16),即可.
解答:解:∵f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,
∴f(9)=f(3)+f(3)=2q,
f(4)=f(2)+f(2)=2p,
f(16)=f(4)+f(4)=4p,
∵f(144)=f(9)+f(16),
∴f(144)=2q+4p.
故選:B.
點(diǎn)評:本題主要考查利用條件遞推函數(shù)的數(shù)值,根據(jù)條件求出f(9)和f(16)即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)滿足f(-x)=f(x),且在(-∞,-1]上是增函數(shù),則(  )
A、f(-
3
2
)<f(-1)<f(2)
B、f(-1)<f(-
3
2
)<f(2)
C、f(2)<f(-1)<f(-
3
2
)
D、f(2)<f(-
3
2
)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(x)滿足f(-x)=f(x),且在(-∞,-1]上是增函數(shù),則( 。
A.f(-
3
2
)<f(-1)<f(2)
B.f(-1)<f(-
3
2
)<f(2)
C.f(2)<f(-1)<f(-
3
2
)
D.f(2)<f(-
3
2
)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省湘西州邊城高級中學(xué)高三(上)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習(xí)冊答案