現(xiàn)有7名數(shù)理化成績優(yōu)秀者,其中A1,A2,A3數(shù)學成績優(yōu)秀,B2,B3物理成績優(yōu)秀,C2,C3化學成績優(yōu)秀.從中選出數(shù)學、物理、化學成績優(yōu)秀者各1名,組成一個小組代表學校參加競賽.
(Ⅰ)求C1被選中的概率;
(Ⅱ)求A1被B1不全被選中的概率.
(Ⅰ)從7人中選出數(shù)學、物理、化學成績優(yōu)秀者各1名,其一切可能的結果組成的基本事件Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),
(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2).}
由12個基本事件組成.由于每一個基本事件被抽取的機會均等,因此這些基本事件的發(fā)生是等可能的,用M表示“C1恰被選中”這一事件,則M={(A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1),(A3,B1,C1),(A3,B2,C1)}.事件M由6個基本事件組成,
因而P(M)=
6
12
=
1
2

(Ⅱ)用N表示“A1,B1不全被選中”這一事件,則其對立事件
.
N
表示“A1,B1全被選中”這一事件,
由于
.
N
={(A1,B1,C1),(A1,B1,C2)},事件
.
N
有2個基本事件組成.
所以P(
.
N
)=
2
12
=
1
6

由對立事件的概率公式得P(N)=1-P(
.
N
)=1-
1
6
=
5
6
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)有7名數(shù)理化成績優(yōu)秀者,其中A1,A2,A3數(shù)學成績優(yōu)秀,B2,B3物理成績優(yōu)秀,C2,C3化學成績優(yōu)秀.從中選出數(shù)學、物理、化學成績優(yōu)秀者各1名,組成一個小組代表學校參加競賽.
(Ⅰ)求C1被選中的概率;
(Ⅱ)求A1被B1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有7名數(shù)理化成績優(yōu)秀者,其中A1,A2,A3數(shù)學成績優(yōu)秀,B2,B3物理成績優(yōu)秀,C2,C3化學成績優(yōu)秀.從中選出數(shù)學、物理、化學成績優(yōu)秀者各1名,組成一個小組代表學校參加競賽.
(Ⅰ)求C1被選中的概率;
(Ⅱ)求A1被B1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年山東省濰坊七中高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

現(xiàn)有7名數(shù)理化成績優(yōu)秀者,其中A1,A2,A3數(shù)學成績優(yōu)秀,B2,B3物理成績優(yōu)秀,C2,C3化學成績優(yōu)秀.從中選出數(shù)學、物理、化學成績優(yōu)秀者各1名,組成一個小組代表學校參加競賽.
(Ⅰ)求C1被選中的概率;
(Ⅱ)求A1被B1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年山東省濟南市高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

現(xiàn)有7名數(shù)理化成績優(yōu)秀者,其中A1,A2,A3數(shù)學成績優(yōu)秀,B2,B3物理成績優(yōu)秀,C2,C3化學成績優(yōu)秀.從中選出數(shù)學、物理、化學成績優(yōu)秀者各1名,組成一個小組代表學校參加競賽.
(Ⅰ)求C1被選中的概率;
(Ⅱ)求A1被B1不全被選中的概率.

查看答案和解析>>

同步練習冊答案