已知數(shù)列{an}和{bn}都是等差數(shù)列,它們的前n項(xiàng)和分別記為Sn和Tn,且
Sn
T
 
n
=
2n+3
3n-4
,則
a10
b10
=
41
53
41
53
分析:直接利用等差數(shù)列前n項(xiàng)和的知識(shí),S2n-1=(2n-1)•an,求出
a10
b10
的值.
解答:解:因?yàn)榈炔顢?shù)列前n項(xiàng)和中,S2n-1=(2n-1)•an,
所以a10=
S19
19
,b10=
T19
19

a10
b10
=
S19
T19
=
2×19+3
3×19-4
=
41
53

故答案為:
41
53
點(diǎn)評(píng):在等差數(shù)列中,S2n-1=(2n-1)•an,即中間項(xiàng)的值,等于所有項(xiàng)值的平均數(shù),這是等差數(shù)列常用性質(zhì)之一,希望大家牢固掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*,
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)問是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ為實(shí)數(shù),且λ≠-18,n為正整數(shù).
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�