某班有50名學(xué)生,某次數(shù)學(xué)考試成績(jī)平均分為70分,標(biāo)準(zhǔn)差為s;后來(lái)發(fā)現(xiàn)記錄有誤,甲同學(xué)得70分誤記為40分,乙同學(xué)得50分誤記為80分,更正后重新計(jì)算的標(biāo)準(zhǔn)差為S1,則S與S1的大小關(guān)系為( 。
A、S>S1
B、S<S1
C、S=S1
D、不能確定
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由題意知其平均數(shù)不變,依然為70分,再計(jì)算變的數(shù)對(duì)標(biāo)準(zhǔn)差的影響即可.
解答: 解:∵甲同學(xué)得70分誤記為40分,乙同學(xué)得50分誤記為80分,
∴其平均數(shù)不變,依然為70分;
而(40-70)2+(80-70)2>(70-70)2+(50-70)2
故更正后重新計(jì)算的標(biāo)準(zhǔn)差為S1比S要;
故選A.
點(diǎn)評(píng):本題考查了樣本數(shù)據(jù)的數(shù)字特征,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
x+1
,點(diǎn)A0表示坐標(biāo)原點(diǎn),點(diǎn)An(n,f(n))(n∈N*).若向量an=
A0A1
+
A1A2
+…+
AN-1An
,θn是an與i的夾角(其中i=(1,0)),則tanθn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(普通文科做)已知f(x)=x3+bx2+9x+a有兩個(gè)極值點(diǎn),求:
(1)b的取值范圍;
(2)當(dāng)x=1時(shí),切線的斜率為0.求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=(-1)n+1n-2an(n∈N+)且a1=a7,那么a1+a2+a3+a4+a5+a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面有三個(gè)命題:
①關(guān)于x的方程mx2+mx+1=0(m∈R)的解集恰有一個(gè)元素的充要條件是m=0或m=4;
②?m∈R,使函數(shù)f(x)=mx2+x是奇函數(shù);
③命題“x,y是實(shí)數(shù),若x+y≠2,則x≠1或y≠1”是真命題.
其中,真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-(a+1)x(a∈R)
(1)當(dāng)x>0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若x∈R,f(x)≥b(b∈R)恒成立,求(a+1)b的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=3,a3+a4=12.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=2an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x與過(guò)其焦點(diǎn)且垂直于x軸的直線相交于A,B兩點(diǎn),其準(zhǔn)線與x軸的交點(diǎn)為M,則過(guò)M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科實(shí)驗(yàn)做)已知函數(shù)f(x)=
1
2
x4-2x3+3m,x∈R,若f(x)-
5m
2
≥0恒成立,則m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案