執(zhí)行如圖的程序框圖,輸出的S=
 

考點(diǎn):循環(huán)結(jié)構(gòu)
專題:算法和程序框圖
分析:根據(jù)程序框圖的功能是求S=1•log23•log34…,判斷終止程序運(yùn)行的k值,利用對(duì)數(shù)換底公式求得S值.
解答: 解:由程序框圖得:第一次運(yùn)行S=1•log23,k=3;
第二次運(yùn)行S=1•log23•log34,k=4;
第三次運(yùn)行S=1•log23•log34•log45,k=5;

直到k=8時(shí),程序運(yùn)行終止,此時(shí)S=1•log23•log34…log78=
lg3
lg2
lg4
lg3
lg5
lg4
lg8
lg7
=log28=3.
故答案為:3.
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,判斷程序框圖的運(yùn)行功能是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c為內(nèi)角A,B,C的對(duì)邊,且有4sinAsinC-2cos(A-C)=1.
(Ⅰ)若a=3,c=4,求b;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F(1,0),右頂點(diǎn)A,且|AF|=1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線l:y=kx+m與橢圓C有且只有一個(gè)交點(diǎn)P,且與直線x=4交于點(diǎn)Q,問:是否存在一個(gè)定點(diǎn)M(t,0),使得
MP
MQ
=0
.若存在,求出點(diǎn)M坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1 
(a>b>0)的右焦點(diǎn)F,拋物線:x2=4
2
y的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點(diǎn)M,且
MA
=λ1
AF
MB
=λ2
BF
.試判斷λ12的值是否為定值,若是求出定值,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=3,f(C)=2,若向量
m
=(1,sinA)與向量
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=ex定義域中的任意的x1,x2(x1≠x2),有如下結(jié)論:
(1)f(x1x2)=f(x1)+f(x2);    
(2)f(x1+x2)=f(x1)f(x2);
(3)
f(x1)-f(x2)
x1-x2
<0;       
 (4)
f(x1)-f(x2)
x1-x2
>0
;
(5)f(
x1+x2
2
)<
f(x1)+f(x2)
2

上述結(jié)論中正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),A、B分別是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),M、N是橢圓上關(guān)于x軸對(duì)稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,若|k1•k2|=
1
4
,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x+y-3≥0
x+2y-5≤0
y≥0
,則z=(x-1)2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
2-i
1-i
=( 。
A、
3
2
+
1
2
i
B、
1
2
+
3
2
i
C、1+3i
D、3-i

查看答案和解析>>

同步練習(xí)冊(cè)答案