1.復數(shù)$\frac{i^3}{{{{(1+i)}^2}}}$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{i}{2}$D.$\frac{i}{2}$

分析 利用復數(shù)的運算法則即可得出.

解答 解:復數(shù)$\frac{i^3}{{{{(1+i)}^2}}}$=$\frac{-i}{2i}$=-$\frac{1}{2}$,
故選:B.

點評 本題考查了復數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,點(1,e)和$(e,\frac{{\sqrt{21}}}{5})$都在橢圓上,其中e為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)a>2,B1,B2分別是線段OF1,OF2的中點,過點B1作直線交橢圓于P,Q兩點.若PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知ω>0,在函數(shù)y=4sinωx與y=4cosωx的圖象的交點中,距離最近的兩個交點的距離為6,則ω的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow$=(y,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則xy的最大值為( 。
A.-$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=DC=2,點E,F(xiàn)分別為AD,PC的中點.
(Ⅰ)證明:DF∥平面PBE
(Ⅱ)求點F到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知△ABC是邊長為2的正三角形,那么它的平面直觀圖△A′B′C′的面積為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.從隨機編號為0001,0002,…,1500的1500名參加這次南昌市四校聯(lián)考期末測試的學生中用系統(tǒng)抽樣的方法抽取一個樣本進行成績分析,已知樣本中編號最小的兩個編號分別為0018,0068,則樣本中最大的編號應該是(  )
A.1466B.1467C.1468D.1469

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{6}{x}$-log3x,在下列區(qū)間中,包含 f(x)零點的區(qū)間是(  )
A.(0,1)B.(3,9)C.(1,3)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.點B在y軸上運動,點C在直線l:x-y-2=0上運動,若A(2,3),則△ABC的周長的最小值為3$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案