已知
a
=(1,sinx),
b
=(cosx,1)
,則
a
b
的最小值為
-
2
-
2
分析:
a
b
=cosx+sinx=
2
sin(x+
π
4
)
,結(jié)合正弦函數(shù)的性質(zhì)可求
解答:解:∵
a
b
=cosx+sinx=
2
sin(x+
π
4
)

-1≤sin(x+
π
4
)≤ 1

-
2
 ≤
2
sin(x+
π
4
)≤
2

a
b
的最小值為-
2

故答案為-
2
點(diǎn)評(píng):本題主要考查了向量的數(shù)量積的坐標(biāo)表示的應(yīng)用,正弦函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,sinθ),
b
=(1,cosθ)
,θ∈R.
(1)若
a
-
b
=(0,
1
5
)
,求sin2θ的值;
(2)若
a
+
b
=(2,0)
,求
sinθ+2cosθ
2sinθ-cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,sinθ),
b
=(1,cosθ)
,θ∈R;
(1)若
a
+
b
=(2,0)
,求sin2θ+2sinθcosθ的值;
(2)若
a
-
b
=(0,
1
5
)
,θ∈(π,2π),求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江一模)已知
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos2θ
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,sinα),
b
=(2,
3
)且
a
b
,則銳角α的大小為( 。
A、
π
6
B、
π
3
C、
π
4
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:內(nèi)江一模 題型:單選題

已知
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos2θ
=( 。
A.-
1
3
B.-
2
3
C.
2
3
D.
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案