14.已知集合A={x∈N|ex<9},其中e為自然對數(shù)的底數(shù),e≈2.718281828,集合B={x|x(x-2)<0},則A∩(∁RB)的真子集個數(shù)為( 。
A.3B.4C.7D.0

分析 由全集U及B,求出B的補集,找出A與B補集的交集即可.

解答 解:集合A={x∈N|ex<9}={0,1,2},
∵B═{x|x(x-2)<0}={x|0<x<2},
∴∁RB={x|x≤0或x≥2},
∴A∩(∁RB)={0,2},
∴A∩(∁RB)的真子集個數(shù)為是;22-1=3.
故選:A.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l,m,n均為直線,其中m,n在平面α內(nèi),則“l(fā)⊥m且l⊥n”是“l(fā)⊥α”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC是銳角三角形,內(nèi)角A、B、C所對的邊分別是a、b、c,滿足${sin}^{2}A=sin(\frac{π}{3}+B)sin(\frac{π}{3}-B)+{sin}^{2}$B.
(Ⅰ)求角A的值;
(Ⅱ)若$\overrightarrow{AB}•\overrightarrow{AC}$=12,a=2$\sqrt{7}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)4,m,1構(gòu)成一個等比數(shù)列,則曲線$\frac{x^2}{m}+{y^2}=1$的離心率為$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π,x∈R)的最大值是1,其圖象經(jīng)過點$M({\frac{π}{3}\;,\;\;\frac{1}{2}})$.
(1)求f(x)的解析式;
(2)已知$α\;,\;\;β∈({0\;,\;\;\frac{π}{2}})$,且$f(α)=\frac{3}{5}$,$f(β)=\frac{12}{13}$.求f(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如果拋物線y2=ax的準(zhǔn)線是直線x=-1,那么它的焦點坐標(biāo)為(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知OPQ是半徑為1,圓心角為$\frac{π}{3}$的扇形,C是扇形弧上的動點,ABCD是扇形的內(nèi)接矩形.
(1)求扇形OPQ的面積;
(2)記∠COP=α,求當(dāng)角α取何值時,矩形ABCD的面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知p:2x2-3x+1>0,q:${x^2}-(2a+1)x+\frac{3}{2}a≤0$,且¬p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實數(shù)a和b均為非負(fù)數(shù),則下面表達(dá)正確的是(  )
A.a>0且b>0B.a>0或b>0C.b≥0或b≥0D.a≥0且b≥0

查看答案和解析>>

同步練習(xí)冊答案