已知函數(shù)
①當(dāng)時,求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)在處取得極值,不等式對恒成立,求實數(shù)的取值范圍。
(1)最大值是,最小值是。(2)當(dāng)單調(diào)遞減,在單調(diào)遞增,當(dāng)單調(diào)遞減(3)
解析試題分析:(1)當(dāng)
1分
當(dāng)
2分
又
上的最大值是,最小值是。 3分
(2)
當(dāng)時,令。
單調(diào)遞減,在單調(diào)遞增 5分
當(dāng)恒成立
為減函數(shù) 6分
當(dāng)時,恒成立
單調(diào)遞減 。 7分
綜上,當(dāng)單調(diào)遞減,在單調(diào)遞增,當(dāng)單調(diào)遞減 8分
(3),依題意:
9分
又 恒成立。即
法(一)在上恒成立 10分
令 12分
當(dāng)時
14分
法(二)由上恒成立。
設(shè) 10分
∴ 11分
當(dāng)恒成立,無最值
當(dāng)
14分
考點:本題考查了導(dǎo)數(shù)的運用
點評:對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導(dǎo)數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學(xué)思想的運用
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時,不等式f(x)>m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時,不等式f(x)>m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并證明函數(shù)的單調(diào)性;
(2)當(dāng)時,求函數(shù)的最大值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若是函數(shù)在點附近的某個局部范圍內(nèi)的最大(。┲担瑒t稱是函數(shù)的一個極值,為極值點.已知,函數(shù).
(Ⅰ)若,求函數(shù)的極值點;
(Ⅱ)若不等式恒成立,求的取值范圍.
(為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中實數(shù),是自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)在點處的切線方程;
(Ⅱ)求在區(qū)間上的最小值;
(Ⅲ) 若存在,使方程成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com