已知雙曲線的離心率,左、右焦點分別為,左準線為l,能否在雙曲線的左支上找到一點P,使得Pl的距離d的等比中項?

答案:略
解析:

假設在左半支上存在P點,使,由雙曲線的第二定義,知,即.      ①

再由雙曲線的第一定義,得.  ②

由①、②,解得,

,

.            、

利用,由③式得

解得.由e1,得,與已知矛盾.故符合條件的點P不存在.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為( 。
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1有相同的焦點,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1
有相同的焦點,
(1)求橢圓的離心率;   
(2)求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點,P為雙曲線上一點,且∠F1PF2=60°,S△PF1F2=12
3
.該雙曲線的標準方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

同步練習冊答案