如圖, 直線y=x與拋物線y=x2-4交于A、B兩點, 線段AB的垂直平分線與直線y=-5交于Q點.
(1) 求點Q的坐標;
(2) 當P為拋物線上位于線段AB下方
(含A、B) 的動點時, 求ΔOPQ面積的最大值.
(文科學生做)
【解】(1) 解方程組 | y=x | 得 | X1=-4, x2=8 |
y=x2-4 | y1=-2, y2=4 |
即A(-4,-2),B(8,4), 從而AB的中點為M(2,1).--------------------------------3分
由kAB==,直線AB的垂直平分線方程y-1=(x-2).
令y=-5, 得x=5, ∴Q(5,-5)-----------6分
(2) 直線OQ的方程為x+y=0, ---------------7分
設P(x, x2-4).
∵點P到直線OQ的距離d==,-----------------8分
,∴SΔOPQ==.-----------------------------9分
∵P為拋物線上位于線段AB下方的點, 且P不在直線OQ上,
∴-4≤x<4-4或4-4<x≤8.----------------------------------------10分
∵函數(shù)y=x2+8x-32在區(qū)間[-4,8] 上單調(diào)遞增,----------------------11分
∴當x=8時, ΔOPQ的面積取到最大值30.-----------------------------------12分。
科目:高中數(shù)學 來源: 題型:
(04年上海卷文)(本題滿分14分) 第1小題滿分6分, 第2小題滿分8分
如圖, 直線y=x與拋物線y=x2-4交于A、B兩點, 線段AB的垂直平分線與直線y=-5交于Q點.
(1) 求點Q的坐標;
(2) 當P為拋物線上位于線段AB下方
(含A、B) 的動點時, 求ΔOPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年蘇教版高中數(shù)學選修1-1 2.4拋物線練習卷(解析版) 題型:解答題
如圖, 直線y=x與拋物線y=x2-4交于A、B兩點, 線段AB的垂直平分線與直線y=-5交于Q點.
(1)求點Q的坐標;
(2)當P為拋物線上位于線段AB下方
(含A、B)的動點時, 求ΔOPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖, 直線y=x與拋物線y=x2-4交于A、B兩點, 線段AB的垂直平分線與直線y=-5交于Q點.
(1) 求點Q的坐標;
(2) 當P為拋物線上位于線段AB下方(含A、B) 的動點時, 求ΔOPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求點Q的坐標;
(2)當P為拋物線上位于線段AB下方(含點A、B)的動點時,求△OPQ面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com