考點(diǎn):數(shù)列的求和,數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由10S
n=
+5a
n+6,利用遞推式可得a
n-a
n-1=5,當(dāng)n=1時(shí),
10a1=+5a1+6,解得a
1=2或3,通過(guò)驗(yàn)證可得a
1=2,利用等差數(shù)列的通項(xiàng)公式可得a
n.
(2)由b
n=
=
<.再利用等比數(shù)列的前n項(xiàng)和公式即可證明.
解答:
(1)解:∵10S
n=
+5a
n+6,∴當(dāng)n≥2時(shí),
10Sn-1=+5a
n-1+6,∴
10an=+5an--5an-1,
化為(a
n+a
n-1)(a
n-a
n-1-5)=0,∴a
n-a
n-1=5,
當(dāng)n=1時(shí),
10a1=+5a1+6,解得a
1=2或3,
若a
1=3,則a
2=8,a
3=13,不滿足a
3<13,舍去.
若a
1=2,則a
2=7,a
3=12,滿足a
3<13.
∴a
1=2.
∴數(shù)列{a
n}是等差數(shù)列,首項(xiàng)為2,公差為5,
∴a
n=2+5(n-1)=5n-3.
(2)證明:b
n=
=
=
<.
∴b
1+b
2+…+b
n<
++…+
=
=
(1-)<.
點(diǎn)評(píng):本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、遞推式的應(yīng)用,考查了變形能力,考查了推理能力與計(jì)算能力,屬于中檔題.