將曲線上各點的縱坐標縮短到原來的(橫坐標不變),所得曲線的方程是(    )

A、       B、      C、      D、

 

【答案】

B

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將曲線x2+y2=4上各點的縱坐標縮短到原來的
1
2
(橫坐標不變),所得曲線的方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將圓O:x2+y2=4上各點的縱坐標變?yōu)樵瓉淼囊话耄M坐標不變),得到曲線C.設O為坐標原點,直線l:x=my+
3
與C交于A、B兩點,N為線段AB的中點,延長線段ON交C于點E.若
OE
=2
ON
,則m=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)選修4-4:坐標系與參數(shù)方程
將圓x2+y2=4上各點的縱坐標壓縮至原來的
1
2
,所得曲線記作C; 直線l:ρ=
8
2cosθ+3sinθ

(I)寫出直線l與曲線C的直角坐標方程
(II)求C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年新疆烏魯木齊地區(qū)高三第一次診斷性測驗文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分10分)選修4   -4 :坐標系與參數(shù)方程

將圓上各點的縱坐標壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0

繞原點逆時針旋轉90°所得直線記作l

.(I)求直線l與曲線C的方程;

(II)求C上的點到直線l的最大距離.

 

查看答案和解析>>

同步練習冊答案