【題目】如圖所示,在四棱錐A﹣BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點,AB=BC=2,BE= .
(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點G,使得二面角D﹣BG﹣E的大小為 ?若存在,求 的值;若不存在,說明理由.
【答案】證明:(Ⅰ)取BC的中點M,連接MF,ME,
∵AB⊥平面BCDE,MF∥AB,
∴MF⊥平面BCDE,又BD平面BCDE,∴MF⊥BD.
在Rt△MBE與Rt△BED中,
∵ = = ,∴Rt△MBE∽Rt△BED.
∴∠BME=∠EBD,而∠BME+∠BEM=90°,
于是∠BEM+∠EBD=90°,∴ME⊥BD,
又∵MF∩ME=M,∴BD⊥平面MEF,
又∵EF平面MEF,∴EF⊥BD.
解:(Ⅱ)∵AB⊥平面BCDE,四邊形BCDE為矩形,
∴以B為原點,分別以 、 、 的方向為x軸、y軸、z軸的正方向建立空間直角坐標系,
設(shè)AG=λAE,依題意可得B(0,0,0),C(2,0,0),
D(2, ,0),A(0,0,2),E(0, ,0),F(xiàn)(1,0,1),
∴ = + = +λ =(0, λ,2﹣2λ), =(2, ,0),
設(shè)平面BGD的法向量為 =(x,y,z),
則 ,取x=1,則 =(1,﹣ , ),
平面BGE的法向量為 =(1,0,0),
∵二面角D﹣BG﹣E的大小為 ,
∴|cos< , >|= = = ,解得λ= .
∴存在一點G,且 = 時,二面角D﹣BG﹣E的大小為 .
【解析】(Ⅰ)求兩條異面直線互相垂直,可以求得一直線垂直于另一直線所在平面,進而證明兩條異面直線互相垂直;(Ⅱ)根據(jù)題意建立合適的空間直角坐標系,令二面角D﹣BG﹣E的大小為,求得此時點G的位置,即可解題 .
【考點精析】利用空間中直線與直線之間的位置關(guān)系對題目進行判斷即可得到答案,需要熟知相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.
科目:高中數(shù)學 來源: 題型:
【題目】已知過點(0,1)的直線與圓x2+y2=4相交于A、B兩點,若 ,則點P的軌跡方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準線與到點C的距離之和的最小值為2a,O為坐標原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“a=﹣1”是“直線ax+3y+2=0與直線x+(a﹣2)y+1=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(, 是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口是的中點, 分別落在線段上.已知米, 米,記.
(1)試將污水凈化管道的總長度 (即的周長)表示為的函數(shù),并求出定義域;
(2)問當取何值時,污水凈化效果最好?并求出此時管道的總長度.
(提示: .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)正三棱錐A﹣BCD(底面是正三角形,頂點在底面的射影為底面中心)的所有頂點都在球O的球面上,BC=2,E,F(xiàn)分別是AB,BC的中點,EF⊥DE,則球O的表面積為( )
A.
B.6π
C.8π
D.12π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓與軸相切于點,且圓心在直線上.
(Ⅰ)求圓的標準方程;
(II)設(shè)為圓上的兩個動點, ,若直線和的斜率之積為定值2,試探求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com