【題目】已知實數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

【答案】B
【解析】解:∵實數(shù)a≠0,函數(shù)f(x)= ,f(1﹣a)=f(1+a),
∴若a>0,則1﹣a<1,1+a>1,又f(1﹣a)=f(1+a),
∴2(1﹣a)+a=﹣(1+a)﹣2a,解得a=﹣ ,不成立;
若a<0,則1﹣a>1,1+a<1,又f(1﹣a)=f(1+a),
∴2(1+a)+a=﹣(1﹣a)﹣2a,解得a=﹣
∴a=﹣
故選:B.
【考點精析】認真審題,首先需要了解函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品的三個質(zhì)量指標分別為x,y,z,用綜合指標Sxyz評價該產(chǎn)品的等級.若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機抽取2件產(chǎn)品,

() 用產(chǎn)品編號列出所有可能的結果;

() 設事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標S都等于4求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線)與橢圓相交于,兩個不同的點,與軸相交于點,記為坐標原點.

(1)證明:

(2)若,求的面積取得最大值時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a是實數(shù),f(x)=a﹣ (x∈R).
(1)證明不論a為何實數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關于x的不等式f(x+1)+f(1﹣2x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,點 的極坐標是,曲線 的極坐標方程為.以極點為坐標原點,極軸為 軸的正半軸建立平面直角坐標系,斜率為 的直線 經(jīng)過點.

(1)寫出直線 的參數(shù)方程和曲線 的直角坐標方程;

(2)若直線 和曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域為集合A,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(RA)∩B;
(2)若A∪C=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上.

1求橢圓的方程;

2過點的直線,交橢圓兩點,點在橢圓上,坐標原點恰為的重心,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若直線是函數(shù)圖象的一條切線,求實數(shù)的值;

(2)若函數(shù)上的最大值為為自然對數(shù)的底數(shù)),求實數(shù)的值;

(3)若關于的方程有且僅有唯一的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案