若等比數(shù)列{an}的前n項和為Sn,且S3=1,S9=7,則S6=________.

-2或3
分析:利用等比數(shù)列性質(zhì):由{an}為等比數(shù)列,得S3,S6-S3,S9-S6成等比數(shù)列,由此得到方程,解出即可.
解答:因為{an}為等比數(shù)列,
所以由等比數(shù)列的性質(zhì)知,S3,S6-S3,S9-S6成等比數(shù)列,即,
所以,解得S6=-2或3,
故答案為:-2或3.
點評:本題考查等比數(shù)列的前n項和,考查等比數(shù)列的性質(zhì),屬基礎(chǔ)題,靈活應(yīng)用等比數(shù)列的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和Sn滿足:an+1=a1Sn+1(n∈N*),則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和S n=3×2n+a(a為常數(shù)),則
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
=
3(4n-1)
3(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和為Sn,a2=6,S3=21,則公比q=
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有數(shù)列{an},若存在M>0,使得對一切自然數(shù)n,都有|an|<M成立,則稱數(shù)列{an}有界,下列結(jié)論中:
①數(shù)列{an}中,an=
1n
,則數(shù)列{an}有界;
②等差數(shù)列一定不會有界;
③若等比數(shù)列{an}的公比滿足0<q<1,則{an}有界;
④等比數(shù)列{an}的公比滿足0<q<1,前n項和記為Sn,則{Sn}有界.
其中一定正確的結(jié)論有
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前項n和為Sn,且
S4
S2
=5,則
S8
S4
=
 

查看答案和解析>>

同步練習(xí)冊答案