【題目】已知,分別為的中點(diǎn),,將沿折起,得到四棱錐,的中點(diǎn).

1)證明:平面;

2)當(dāng)正視圖方向與向量的方向相同時(shí),此時(shí)的正視圖的面積為,求四棱錐的體積.

【答案】1)證明見解析;(2

【解析】

1)根據(jù)題意可知,由三線合一可證明,進(jìn)而由線面垂直的判定可證明平面;

2)根據(jù)平面平面,所以在平面內(nèi)的射影應(yīng)該落在直線上,所以點(diǎn)到平面的距離為,進(jìn)一步求出點(diǎn)到平面的距離,然后代入錐體體積公式計(jì)算即可.

解:(1)由平面圖可知,,

所以平面,所以.

因?yàn)?/span>的中點(diǎn),,∴.

因?yàn)?/span>,所以平面.

2)因?yàn)?/span>的正視圖與全等,所以

,∴.

由(1)可知,平面平面,所以在平面內(nèi)的射影應(yīng)該落在直線

上,所以點(diǎn)到平面的距離為,

所以四棱錐的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上三個(gè)不同的點(diǎn),且.

(Ⅰ)若,求點(diǎn)的坐標(biāo);

(Ⅱ)若拋物線上存在點(diǎn),使得線段總被直線平分,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在極坐標(biāo)系中,,,弧,,所在圓的圓心分別為,,,曲線是弧,曲線是弧,曲線是弧

1)寫出曲線,的極坐標(biāo)方程;

2)曲線,,構(gòu)成,若曲線的極坐標(biāo)方程為,),寫出曲線與曲線的所有公共點(diǎn)(除極點(diǎn)外)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),拋物線處的切線交軸于點(diǎn),過點(diǎn)作直線與拋物線交于不同的兩點(diǎn)、,直線、分別與拋物線的準(zhǔn)線交于點(diǎn)、,其中為坐標(biāo)原點(diǎn).

)求拋物線的方程及其準(zhǔn)線方程,并求出點(diǎn)的坐標(biāo);

)求證:為線段的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,BD為四邊形的一條對(duì)角線,且,將沿BD向上翻折,當(dāng)點(diǎn)A在平面BCD內(nèi)的投影恰好為的外心E時(shí),設(shè)直線AE與平面ABC,ACD,ABD的夾角分別為,,,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐PABCD中,側(cè)面PAD⊥底面ABCD,∠BAD60°,△PAD是邊長為2的正三角形,底面ABCD是菱形,點(diǎn)MPC的中點(diǎn).

1)求證:PA∥平面MDB;

2)求三棱錐ABDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C).若,,,四點(diǎn)中有且僅有三點(diǎn)在橢面C上.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)O為坐標(biāo)原點(diǎn),F為橢圓C的右焦點(diǎn),過點(diǎn)F的直線l分別與橢圓C交于M,N兩點(diǎn),,求證:直線,關(guān)于x軸對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,曲線上任意一點(diǎn)到的距離等于該點(diǎn)到直線的距離.

(Ⅰ)求及曲線的方程;

(Ⅱ)若直線與橢圓只有一個(gè)交點(diǎn),與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案