已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的動(dòng)直線L交橢圓C于 A.B兩點(diǎn).問(wèn):是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T ? 若存在,求點(diǎn)T坐標(biāo);若不存在,說(shuō)明理由.
(Ⅰ)由
因直線相切,,∴,…2分
∵圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角
形,∴ ………………4分
故所求橢圓方程為 ………………5分
(Ⅱ)當(dāng)L與x軸平行時(shí),以AB為直徑的圓的方程:
當(dāng)L與x軸垂直時(shí),以AB為直徑的圓的方程:
由
即兩圓公共點(diǎn)(0,1)因此,所求的點(diǎn)T如果存在,只能是(0,1) ………7分
(。┊(dāng)直線L斜率不存在時(shí),以AB為直徑的圓過(guò)點(diǎn)T(0,1)
(ⅱ)若直線L斜率存在時(shí),可設(shè)直線L:
由
記點(diǎn). ………………9分
∴TA⊥TB, ………………11分
綜合(ⅰ)(ⅱ),以AB為直徑的圓恒過(guò)點(diǎn)T(0,1).
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年山東省實(shí)驗(yàn)中學(xué)綜合測(cè)試?yán)?(本小題滿(mǎn)分13分)已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的動(dòng)直線L交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一
個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,
請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的動(dòng)直線L交橢圓C于A、B兩點(diǎn).問(wèn):是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T ? 若存在,求點(diǎn)T坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆福建泉州一中高二第二學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連結(jié)成等腰直角三角形,直線是拋物線的一條切線。
(1) 求橢圓方程;
(2) 直線交橢圓于A、B兩點(diǎn),若點(diǎn)P滿(mǎn)足(O為坐標(biāo)原點(diǎn)), 判斷點(diǎn)P是否在橢圓上,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高三下學(xué)期二輪復(fù)習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的動(dòng)直線L交橢圓C于A.B兩點(diǎn).問(wèn):是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T ? 若存在,求點(diǎn)T坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com