設(shè)f(x)=
(x+1)2(x≥0)
(
1
2
)x(x<0)
,若f2(x)-4f(x)+m=0有四個(gè)不同的實(shí)根,則實(shí)數(shù)m的可取值范圍是(  )
A、[3,4]
B、(3,4]
C、(3,4)
D、[3,4)
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意作f(x)=
(x+1)2(x≥0)
(
1
2
)x(x<0)
的圖象,從而化f2(x)-4f(x)+m=0有四個(gè)不同的實(shí)根為t2-4t+m=0在(1,+∞)上有兩個(gè)不同的根;從而求解.
解答: 解:作f(x)=
(x+1)2(x≥0)
(
1
2
)x(x<0)
的圖象如下,

則若f2(x)-4f(x)+m=0有四個(gè)不同的實(shí)根,
則t2-4t+m=0在(1,+∞)上有兩個(gè)不同的根;
16-4m>0
1-4+m>0
,
解得,3<m<4;
故選C.
點(diǎn)評:本題考查了學(xué)生的作圖用圖能力及方程的根的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,且PD=AB=a,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
(Ⅰ)求證:EF⊥BC;
(Ⅱ)求點(diǎn)B到平面CEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)焦點(diǎn)為(-6,0),離心率為2的雙曲線方程( 。
A、
x2
16
-
y2
48
=1
B、
x2
9
-
y2
27
=1
C、
x2
16
-
y2
48
=1或
x2
9
-
y2
27
=1
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是真命題的是
 

(1)若a,b為無理數(shù),則a+b為無理數(shù);
(2)ac<0是二次方程ax2+bx+c=0有解的充要條件;
(3)A∩C=C是C⊆A的充分不必要條件;
(4)若a=b=0,則ab=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩圓x2+y2-2x+10y+1=0,x2+y2-2x+2y-m=0相交,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如下的程序框圖,那么輸出的S=(  )
A、5B、12C、20D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+lgx-3的零點(diǎn)所在的區(qū)間為(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)A、B分別為橢圓的左頂點(diǎn)和上頂點(diǎn),B1、F分別為橢圓下頂點(diǎn)和右焦點(diǎn),若直線B1F的斜率為
3
,直線AB與B1F交于點(diǎn)P(4,3
3
),則橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三頂點(diǎn)是A(a,a+1),B(a-1,2a),C (1,3)且△ABC的內(nèi)部及邊界所有點(diǎn)均在3x+y≥2表示的區(qū)域內(nèi),則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案