已知A,B,C是平面上不共線上三點(diǎn),O為△ABC外心,動點(diǎn)P滿足:
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
]
(λ∈R且λ≠0),則P的軌跡一定通過△ABC的( 。
分析:根據(jù)向量的加法的平行四邊形法則向量的運(yùn)算法則,對
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
]
進(jìn)行化簡,得到
2(1-λ)
3
OD
+
1+2λ
3
OC
,根據(jù)三點(diǎn)共線的充要條件知道P、C、D三點(diǎn)共線,但λ≠0則點(diǎn)P的軌跡一定不經(jīng)過△ABC的重心.
解答:解:取AB的中點(diǎn)D,則 2
OD
=
OA
+
OB

OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
]

OP
=
1
3
[(1-λ)(2
OD
)+(1+2λ)
OC
]

=
2(1-λ)
3
OD
+
1+2λ
3
OC
,
2(1-λ)
3
+
1+2λ
3
=1

∴P、C、D三點(diǎn)共線,
∵λ≠0
∴點(diǎn)P的軌跡一定不經(jīng)過△ABC的重心.
故選D.
點(diǎn)評:此題是個(gè)中檔題.考查向量的加法法則和運(yùn)算法則,以及三點(diǎn)共線的充要條件,和三角形的五心問題,綜合性強(qiáng),體現(xiàn)了數(shù)形結(jié)合的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是平面內(nèi)不共線的三點(diǎn),P為平面內(nèi)的動點(diǎn),且
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)  (λ>0)
,則P的軌跡過△ABC的( 。
A、重心B、垂心C、內(nèi)心D、外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是平面上不共線的三點(diǎn),O是三角形ABC的重心,動點(diǎn)P滿足
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
,則點(diǎn)P一定為三角形ABC的( 。
A、AB邊中線的中點(diǎn)
B、AB邊中線的三等分點(diǎn)(非重心)
C、重心
D、AB邊的中點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是平面上不共線的三點(diǎn),o為平面ABC內(nèi)任一點(diǎn),動點(diǎn)P滿足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,則P的軌跡一定通過△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是平面內(nèi)互異的三點(diǎn),O為平面上任意一點(diǎn),
OC
=x
OA
+y
OB
,求證:
(1)若A,B,C三點(diǎn)共線,則x+y=1;
(2)若x+y=1,則A,B,C三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊答案