【題目】計(jì)算下列幾個(gè)式子,結(jié)果為 的序號是 ①tan25°+tan35° tan25°tan35°,
② ,
③2(sin35°cos25°+sin55°cos65°),
④ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)與的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asinx﹣bcosx(a、b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)y=f( ﹣x)是( )
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù) 在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0 ) 經(jīng)過點(diǎn) P(1, ),離心率 e=
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,﹣2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將A、B兩枚骰子各拋擲一次,觀察向上的點(diǎn)數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的結(jié)果有多少種?
(3)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的概率為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com