分析 由韋達定理得a3a15=8,由等比數(shù)列通項公式性質得:${{a}_{9}}^{2}={a}_{3}{a}_{15}={a}_{1}{a}_{17}$=8,由此能求出$\frac{{{a_1}{a_{17}}}}{a_9}$的值.
解答 解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+8=0的根,
∴a3a15=8,
解方程x2-6x+8=0,得$\left\{\begin{array}{l}{{a}_{3}=2}\\{{a}_{15}=4}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{3}=4}\\{{a}_{15}=2}\end{array}\right.$,
∴a9>0,
由等比數(shù)列通項公式性質得:${{a}_{9}}^{2}={a}_{3}{a}_{15}={a}_{1}{a}_{17}$=8,
∴$\frac{{{a_1}{a_{17}}}}{a_9}$=a9=$\sqrt{8}=2\sqrt{2}$.
故答案為:2$\sqrt{2}$.
點評 本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若點P∈α,P∈β且α∩β=l,則P∈l | |
B. | 三點A,B,C能確定一個平面 | |
C. | 若直線a∩b=A,則直線a與b能夠確定一個平面 | |
D. | 若點A∈l,B∈l,且A∈α,B∈α,則l?α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | [1,+∞) | C. | (-1,1) | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否定形式為:“若x2=1,則x≠1”. | |
B. | 命題“若x2+y2=0,則x=y=0”的逆否命題為真. | |
C. | △ABC中,sinA>sinB是A>B的充要條件. | |
D. | 若向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$>0,則$\vec a$與$\vec b$的夾角為銳角. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com