【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)曲線與曲線的交點分別為,求的最大值及此時直線的傾斜角.
【答案】(1)(2)最大值為8,此時直線的傾斜角為
【解析】
(1)先將曲線的參數(shù)方程化為代數(shù)方程,再將此平面直角坐標(biāo)系的代數(shù)方程化為極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的代數(shù)方程,得出當(dāng)取最大值時直線的參數(shù).
(1)因為曲線的參數(shù)方程為,所以曲線的普通方程為,即,
所以曲線的極坐標(biāo)方程為,即.
(2)設(shè)直線上的點對應(yīng)的參數(shù)分別為,
將直線的參數(shù)方程代入曲線的普通方程,可得,即
所以,.
故,
所以當(dāng),即時,取得最大值,最大值為8,此時直線的傾斜角為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把某校名學(xué)生的一次考試成績(單位:分)分成5組得到的頻率分布直方圖如圖所示,其中落在內(nèi)的頻數(shù)為180.
(1)請根據(jù)圖中所給數(shù)據(jù),求出本次考試成績的中位數(shù)(保留一位小數(shù));
(2)從這5組中按分層抽樣的方法選取40名學(xué)生的成績作為一個樣本,在與內(nèi)的樣本中,再隨機抽取兩名學(xué)生的成績,求所抽取兩名學(xué)生成績的平均分不低于70分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
車流量(x萬輛) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
空氣質(zhì)量指數(shù)y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(1)根據(jù)表中周一到周五的數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?
附:回歸方程中斜率和截距最小二乘估計公式分別為:
其中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費標(biāo)準如下:每戶每月用水不超過4噸時,每噸為元,當(dāng)用水超過4噸時,超過部分每噸為元,每月甲、乙兩戶共交水費元,已知甲、乙兩戶該月用水量分別為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若甲、乙兩戶該月共交水費元,分別求出甲、乙兩戶該月的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間、、、的長度均為,已知不等式的解集為.
(1)求的長度;
(2)函數(shù)(,)的定義域與值域都是(),求區(qū)間的最大長度;
(3)關(guān)于的不等式的解集為,若的長度為6,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c.已知cosC=.
(1)若,求△ABC的面積;
(2)設(shè)向量,,且,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一名高二學(xué)生盼望2020年進入某名牌大學(xué)學(xué)習(xí),假設(shè)該名牌大學(xué)有以下條件之一均可錄。孩2020年2月通過考試進入國家數(shù)學(xué)奧賽集訓(xùn)隊(集訓(xùn)隊從2019年10月省數(shù)學(xué)競賽一等獎中選拔);②2020年3月自主招生考試通過并且達到2020年6月高考重點分數(shù)線,③2020年6月高考達到該校錄取分數(shù)線(該校錄取分數(shù)線高于重點線),該學(xué)生具備參加省數(shù)學(xué)競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表
省數(shù)學(xué)競賽一等獎 | 自主招生通過 | 高考達重點線 | 高考達該校分數(shù)線 |
0.5 | 0.6 | 0.9 | 0.7 |
若該學(xué)生數(shù)學(xué)競賽獲省一等獎,則該學(xué)生估計進入國家集訓(xùn)隊的概率是0.2.若進入國家集訓(xùn)隊,則提前錄取,若未被錄取,則再按②、③順序依次錄。呵懊嬉呀(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達重點線才能錄取)
(1)求該學(xué)生參加自主招生考試的概率;
(2)求該學(xué)生參加考試的次數(shù)的分布列及數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司(為企業(yè)服務(wù))準備在兩種員工付酬方式中選擇一種現(xiàn)邀請甲、乙兩人試行10天兩種方案如下:甲無保底工資送出50件以內(nèi)(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工資50元,且每送出一件再支付2元分別記錄其10天的件數(shù)得到如圖莖葉圖,若將頻率視作概率,回答以下問題:
(1)記甲的日工資額為(單位:元),求的分布列和數(shù)學(xué)期望;
(2)如果僅從日工資額的角度考慮請利用所學(xué)的統(tǒng)計學(xué)知識為快遞公司在兩種付酬方式中作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的圓心在直線:上,與直線:相切,截直線:所得的弦長為6.
(1)求圓M的方程;
(2)過點的兩條成角的直線分別交圓M于A,C和B,D,求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com