如圖,在直四棱柱中,底面ABCD為等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分別是棱AD、AA、AB的中點(diǎn)。               
(Ⅰ)證明:直線∥平面;          
(Ⅱ)求二面角的余弦值

(Ⅱ)

解法一:(1)在直四棱柱ABCD-ABCD中,取A1B1的中點(diǎn)F1,
連接A1D,C1F1,CF1,因?yàn)锳B="4," CD=2,且AB//CD,
所以CDA1F1,A1F1CD為平行四邊形,所以CF1//A1D,
又因?yàn)镋、E分別是棱AD、AA的中點(diǎn),所以EE1//A1D,
所以CF1//EE1,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133653546386.gif" style="vertical-align:middle;" />平面FCC,平面FCC,
所以直線EE//平面FCC.······6分
(2)因?yàn)锳B="4," BC="CD=2," 、F是棱AB的中點(diǎn),所以BF=BC=CF,△BCF為正三角形,取CF的中點(diǎn)O,則OB⊥CF,又因?yàn)橹彼睦庵鵄BCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以O(shè)B⊥平面CC1F,過(guò)O在平面CC1F內(nèi)作OP⊥C1F,垂足為P,連接BP,則∠OPB為二面角B-FC-C的一個(gè)平面角, 在△BCF為正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵,    ··········11分

在Rt△OPF中,,,所以
二面角B-FC-C的余弦值為.·······14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直三棱柱中,ACB=90°, 的中點(diǎn),的中點(diǎn)。
(1)求證:MN∥平面 ;
(2)求點(diǎn)到平面BMC的距離;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知ABCD是矩形,,E、F分別是線段AB、BC的中點(diǎn),ABCD.  (1)證明:PFFD
(2)在PA上找一點(diǎn)G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖:已知正方體ABCD—A1B1C1D1,過(guò)BD1的平面分別交棱AA1和棱CC1于E、F兩點(diǎn)。(1)求證:A1E=CF; (2)若E、F分別是棱AA1和棱CC1的中點(diǎn),求證:平面EBFD1⊥平面BB1D1。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)如圖,已知平行四邊形和矩形所在的平面互相垂直,,是線段的中點(diǎn).

(1)求證:;(2)求二面角的大;
(3)設(shè)點(diǎn)為一動(dòng)點(diǎn),若點(diǎn)出發(fā),沿棱按照
的路線運(yùn)動(dòng)到點(diǎn),求這一過(guò)程中形成的三棱錐的體積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,梯形ABCD中,CD//AB,,EAB的中點(diǎn),將△ADE沿DE折起,使點(diǎn)A折到點(diǎn)P的位置,且二面角的大小為1200
(I)求證:;
(II)求直線PD與平面BCDE所成角的大小;
(III)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖三棱柱中,側(cè)棱與底面成角,⊥底面, ⊥側(cè)面,且,,,則頂點(diǎn)到棱的距離是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四面體ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.
(1)平面ABD與平面BCD是否垂直?證明你的結(jié)論;(2)求二面角A-CD-B的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,上的點(diǎn).
(1)當(dāng);
(2)當(dāng)二面角的大小為的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案