【題目】某地區(qū)年至年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析年至年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)年農(nóng)村居民家庭人均純收入.
注:,
【答案】(Ⅰ).(Ⅱ) 2011年至2017年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加0.5千元;預(yù)測該地區(qū)2018年農(nóng)村居民家庭人均純收入為6.3千元.
【解析】分析:(Ⅰ)由題意可得,結(jié)合回歸方程計算公式可得回歸方程為;
(Ⅱ)結(jié)合(Ⅰ)的結(jié)論可得2011年至2017年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加0.5千元;預(yù)測該地區(qū)2018年農(nóng)村居民家庭人均純收入為6.3千元.
詳解:(Ⅰ)由已知可知,故
,所以所求的線性回歸方程為.
(Ⅱ)有(Ⅰ)可知,故2011年至2017年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加0.5千元;當(dāng)時,,
所以預(yù)測該地區(qū)2018年農(nóng)村居民家庭人均純收入為6.3千元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 + =1(a>b>0)的左、右焦點分別為F1、F2 , 右頂點為A,上頂點為B,已知|AB|= |F1F2|.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點F1 , 經(jīng)過原點O的直線l與該圓相切,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進(jìn)行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機(jī)變量,則P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù),在區(qū)間上的唯一零點為2,并且當(dāng)時,,則使得成立的的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求證:
(2)若函數(shù)的圖象與直線沒有交點,求實數(shù)的取值范圍;
(3)若函數(shù),則是否存在實數(shù),使得的最小值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x∈R).
(1)證明:當(dāng)a>3時,f(x)在R上是減函數(shù);
(2)若函數(shù)f(x)存在兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com