7.根據(jù)下列2×2列聯(lián)表,判斷“患肝病和嗜酒有關(guān)系”犯錯(cuò)誤的概率不會超過( 。
嗜酒不嗜酒總計(jì)
患肝病201030
不患肝病304575
總計(jì)5055105
卡方臨界值表
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.10%B.5%C.2.5%D.1%

分析 根據(jù)條件中所給的觀測值,同題目中節(jié)選的觀測值表進(jìn)行檢驗(yàn),得到觀測值對應(yīng)的結(jié)果,得到結(jié)論在犯錯(cuò)誤的概率不超過2.5%的前提下,可以認(rèn)為患肝病和嗜酒有關(guān)系.

解答 解:由題意,K2=$\frac{105×(20×45-30×10)^{2}}{50×55×30×75}$=6.109>5.024,
所以在犯錯(cuò)誤的概率不超過2.5%的前提下,可以認(rèn)為患肝病和嗜酒有關(guān)系.
故選:C.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查對于觀測值表的認(rèn)識,這種題目一般運(yùn)算量比較大,主要要考查運(yùn)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2+bx+c,若f(-3)=f(1),f(0)=-3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ) 若函數(shù)g(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,x≤0}\\{-3-x,x>0}\end{array}\right.$   畫出函數(shù)g(x)圖象;
(Ⅱ)求函數(shù)g(x)在[-3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$\frac{x^2}{2}+{y^2}=1$及點(diǎn)B(0,-3),過左焦點(diǎn)F1與B的直線交橢圓于C,D兩點(diǎn),F(xiàn)2為橢圓的右焦點(diǎn),求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若23-x<0.52x-4,則x的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知三棱柱ABC-A1B1C1,側(cè)面AA1C1C⊥側(cè)面ABB1A1,AA1=A1C=CA=2,$AB={A_1}B=\sqrt{2}$.
(Ⅰ)求證:AA1⊥BC;
(Ⅱ)求二面角A-BC-A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若平面內(nèi)有n(n≥4)個(gè)點(diǎn),滿足任意三點(diǎn)都不共線,且任意兩點(diǎn)構(gòu)成的向量與其余任意兩點(diǎn)構(gòu)成的向量的數(shù)量積為0,則n的最大值為( 。
A.3B.4C.5D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A(2,3),B(1,4)且$\frac{1}{2}\overrightarrow{AB}=({sinα,cosβ}),({α,β∈({-\frac{π}{2},0})})$,則α+β=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.拋物線$x=\frac{1}{4}{y^2}$的焦點(diǎn)到雙曲線x2-y2=2的漸近線的距離是(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=x-$\frac{a}{x}$(a>0),g(x)=2lnx.
(1)若對[1,+∞)內(nèi)的一切實(shí)數(shù)x,不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求最大的正整數(shù)k,使得對[e,3](e=2.71828…是自然對數(shù)的底數(shù))內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(3)求證:$\sum_{i=1}^{n}\frac{4i}{4{i}^{2}-1}$>ln(2n+1),(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案