精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(ax2+bx+c)•ex,其中e為自然對數的底數,a,b,c為常數,若函數f(x)在x=-2處取得極值,且f′(0)=4,
(1)求實數b,c的值;
(2)若函數f(x)在區(qū)間[1,2]上是增函數,求實數a的取值范圍.
【答案】分析:(1)對函數f(x)進行求導令f'(-2)=0、f′(0)=4求出b、c的值.
(2)令導函數f′(x)=ax2+2(a+1)x+4≥0在x∈[1,2]時恒成立即可求出a的范圍.
解答:解:(1)f′(x)=(2ax+b)ex+(ax2+bx+c)ex=[ax2+(b+2a)x+b+c]ex
由f′(-2)=0⇒4a-2(b+2a)+b+c=0⇒b=c,
,
所以b=2,c=2;
(2)由題意知道ax2+2(a+1)x+4≥0在x∈[1,2]時恒成立,
時恒成立,

,
所以a≥-1.
點評:本題主要考查函數的單調性、極值點與其導函數的正負之間的關系.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區(qū)間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案