【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內的產品為合格品,否則為不合格品.統(tǒng)計結果如下:

甲流水線樣本的頻數(shù)分布表

產品重量(克)

頻數(shù)

[490,495)

6

[495,500)

8

[500,505)

14

[505,510)

8

[510,515]

4

乙流水線樣本的頻率分布直方圖

(1)求甲流水線樣本合格的頻率;

(2)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認為產品的包裝質量與兩條自動包裝流水線的選擇有關.

分類

甲流水線

乙流水線

總計

合格品

不合格品

總計

附:K2.

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1) ; (2)有的把握認為產品的包裝質量與兩條自動包裝流水線的選擇有關.

【解析】

(1)利用頻率分布直方圖計算樣本合格的頻率;(2)完善2×2列聯(lián)表,代入公式求解.

(1)由表知甲流水線樣本中合格品數(shù)為8+14+8=30,故甲流水線樣本中合格品的頻率為=0.75.

(2)由(1)知甲流水線樣本中合格品格數(shù)30,乙流水線樣本中合格品數(shù)為0.9×40=36.

則2×2列聯(lián)表如下:

分類

甲流水線

乙流水線

總計

合格品

30

36

66

不合格品

10

4

14

總計

40

40

80

由2×2列聯(lián)表中的數(shù)據(jù)得K2的觀測值為

K=≈3.12>2.706.

故有90%的把握認為產品的包裝質量與兩條自動包裝流水線的選擇有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調性;
(2)若m>0,g(x)=f(x)+ 存在兩個極值點x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,AP⊥平面PCD,ADBC,ABBCAD,EF分別為線段AD,PC的中點.

(1)求證:AP∥平面BEF

(2)求證:BE⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司過去五個月的廣告費支出與銷售額(單位:萬元)之間有下列對應數(shù)據(jù):


2

4

5

6

8



40

60

50

70

工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知呈線性相關關系,且回歸方程為,則下列說法:銷售額與廣告費支出正相關;丟失的數(shù)據(jù)(表中處)為30;該公司廣告費支出每增加1萬元,銷售額一定增加萬元;若該公司下月廣告投入8萬元,則銷售

額為70萬元.其中,正確說法有( )

A1B2C3D4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預測技改后生產100噸甲產品比技改前少消耗多少噸標準煤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)若橢圓上任一點坐標為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《幾何原本》卷2的幾何代數(shù)法(以幾何方法研究代數(shù)問題)成了后世西方數(shù)學家處理問題的重要依據(jù),通過這一原理,很多的代數(shù)的公理或定理都能夠通過圖形實現(xiàn)證明,也稱之為無字證明.現(xiàn)有如圖所示圖形,點F在半圓O上,點C在直徑AB上,且OF⊥AB,設AC=a,BC=b,則該圖形可以完成的無字證明為(
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,過F作平行于x軸的直線交拋物線于A,B兩點(AB的左側),若△AOB的面積為2.

(1)求拋物線C的方程;

(2)P是拋物線C的準線上一點,Q是拋物線上的一點,若PF⊥QF,求證:直線PQ與拋物線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點,PA⊥底面ABCD,PA=2.

(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.

查看答案和解析>>

同步練習冊答案