精英家教網 > 高中數學 > 題目詳情
11、過點(1,3)且與直線x+2y-1=0垂直的直線方程是
2x-y+1=0
分析:由兩條直線垂直斜率之積為-1,求出所求直線的斜率,再代入點斜式直線方程,最后需要化為一般式方程.
解答:解:由題意知,與直線x+2y-1=0垂直的直線的斜率k=2,
∵過點(1,3),
∴所求的直線方程是y-3=2(x-1),
即2x-y+1=0,
故答案為:2x-y+1=0.
點評:本題考查了直線垂直和點斜式方程的應用,利用斜率都存在的兩條直線垂直,斜率之積等于-1,求出直線斜率的值,代入點斜式直線方程,從而得到直線的方程;
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內接四邊形,其中是圓的直徑,,

直底面,分別是上的點,且

,過點的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當時,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內接四邊形,其中是圓的直徑,,

直底面,,分別是上的點,且

,過點的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當時,求的面積.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省高三5月模擬考試理科數學試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;

(2)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線

于點,線段垂直平分線交于點,求點的軌跡的方程;

(3)當P不在軸上時,在曲線上是否存在兩個不同點C、D關于對稱,若存在,

求出的斜率范圍,若不存在,說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2011年廣東省梅州市高二上學期期末考試數學試卷 題型:選擇題

直線L過點且與雙曲線有且僅有一個公共點,則這樣的直

線有(    )

A.1 條         B.2條        C.3條       D.4條

 

查看答案和解析>>

科目:高中數學 來源: 題型:

直線L過點且與雙曲線有且僅有一個公共點,則這樣的直

線有(    )

A.1 條         B.2條        C.3條       D.4條

查看答案和解析>>

同步練習冊答案