對(duì)于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),
(1)設(shè)f(x)=x2-2,求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)設(shè)f(x)=ax2+bx-b,若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)都有兩個(gè)相異的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若奇函數(shù)f(x)(x∈R)存在K個(gè)不動(dòng)點(diǎn),求證:K為奇數(shù).
解:(1)由f(x)=x2-2=x,得x=-1,或x=2.
∴f(x)的不動(dòng)點(diǎn)是-1和2.
(2)因?yàn)閒(x)=ax2+bx-b對(duì)任意實(shí)數(shù)b,都有兩個(gè)相異的不動(dòng)點(diǎn),
即方程ax2+bx-b=x恒有兩個(gè)不同解,
∴ax2+(b-1)x-b=0恒有兩個(gè)不同解
∴△=(b-1)2+4ab>0恒成立,
∴b2+(4a-2)b+1>0恒成立,
∴(4a-2)2-4<0,
解得0<a<1.
故實(shí)數(shù)a的取值范圍是(0,1).
(3)證明:∵奇函數(shù)f(x)(x∈R)存在K個(gè)不動(dòng)點(diǎn),
對(duì)于f(x)上任意不動(dòng)點(diǎn)(x0,x0),有f(x0)=x0,
∵f(x)是奇函數(shù),∴f(-x0)=-f(x0)=-x0,
∴(-x0,-x0)也是f(x)上的不動(dòng)點(diǎn),
即:x0≠0時(shí),f(x)的不動(dòng)點(diǎn)必成對(duì)出現(xiàn)
∵(0,0)是f(x)的不動(dòng)點(diǎn)
所以,f(x)不動(dòng)點(diǎn)的個(gè)數(shù)k必為奇數(shù).
分析:(1)由f(x)=x2-2=x,能求出f(x)的不動(dòng)點(diǎn).
(2)由f(x)=ax2+bx-b,對(duì)任意實(shí)數(shù)b,都有兩個(gè)相異的不動(dòng)點(diǎn),知方程ax2+bx-b=x恒有兩個(gè)不同解,故ax2+(b-1)x-b=0恒有兩個(gè)不同解,故△=(b-1)2+4ab>0恒成立,由此能求出實(shí)數(shù)a的取值范圍.
(3)對(duì)于f(x)上任意不動(dòng)點(diǎn)(x0,x0),有f(x0)=x0,由f(x)是奇函數(shù),知f(-x0)=-f(x0)=-x0,故(-x0,-x0)也是f(x)上的不動(dòng)點(diǎn),再由(0,0)是f(x)的不動(dòng)點(diǎn),知f(x)不動(dòng)點(diǎn)的個(gè)數(shù)k必為奇數(shù).
點(diǎn)評(píng):本題考查函數(shù)的恒成立問題的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.