解:(1)函數(shù)f(x)定義域?yàn)镽,且f(x)是奇函數(shù),所以f(0)=0=a-1
所以存在實(shí)數(shù)a=1使得函數(shù)f(x)是奇函數(shù);
(2)函數(shù)f(x)在(-∞,+∞)上是增函數(shù),證明如下:
設(shè),且,則
因?yàn)楹瘮?shù)在R上是增函數(shù),且y>0,又因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110512/20110512102033920979.gif">,
所以,,
所以,所以函數(shù)f(x)在(-∞,+∞)上是增函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知:函數(shù)(),.
。1)若函數(shù)圖象上的點(diǎn)到直線距離的最小值為,求的值;
(2)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;
。3)對(duì)于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得不等式和
都成立,則稱直線為函數(shù)與的“分界線”。設(shè),
,試探究與是否存在“分界線”?若存在,求出“分界線”的方程;若不存
在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存
在.請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說(shuō)明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調(diào)區(qū)間;
(III )對(duì)于給定的實(shí)數(shù)成立.求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com