已知
a
=(2sinθ,1),
b
=(1,-2cosθ),-
π
4
<θ<
4

(1)若θ=
π
2
,求|
a
-
b
|
;
(2)若
a
b
,求θ.
分析:(1)利用向量的運(yùn)算法則和向量的模的計(jì)算公式即可得出;
(2)利用
a
b
?
a
b
=0
和三角函數(shù)的基本關(guān)系式.
解答:解:(1)θ=
π
2
時(shí),
a
=(2,1)
,
b
=(1,0)
,∴
a
-
b
=(1,1).
|
a
-
b
|
=
1+1
=
2
;
(2)∵
a
b
,∴2sinθ-2cosθ=0,∴tanθ=1.
-
π
4
<θ<
4
,∴θ=
π
4
點(diǎn)評(píng):本題考查了向量的運(yùn)算法則和向量的模的計(jì)算公式、
a
b
?
a
b
=0
和三角函數(shù)的基本關(guān)系式等基礎(chǔ)知識(shí)與基本技能方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2sinωx,cosωx+sinωx)
,
b
=(cosωx,cosωx-sinωx)
,(ω>0),
函數(shù)f(x)=
a
b
,且函數(shù)f(x)的最小正周期為π.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[0,
π
2
]
上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2sin(x+
θ
2
),
3
),
b
=(cos(x+
θ
2
),2cos2(x+
θ
2
)),f(x)=
a
b
-
3

(1)求f(x)的解析式;
(2)若0≤θ≤π,求θ,使f(x)為偶函數(shù);
(3)在(2)的條件下,求滿足f(x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2sinωx,cosωx),
b
=(
3
cosωx,2cosωx)(ω>0),f(x)=
a
b
,f(x)
圖象相鄰兩條對(duì)稱軸間的距離為
π
2

(1)求ω的值;
(2)當(dāng)x∈[0,
π
2
]
時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:藍(lán)山縣模擬 題型:解答題

已知
a
=(2sinωx,cosωx+sinωx)
b
=(cosωx,cosωx-sinωx)
,(ω>0),
函數(shù)f(x)=
a
b
,且函數(shù)f(x)的最小正周期為π.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[0,
π
2
]
上的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案