分析:(1)首先分析求出函數(shù)的定義域,對f(x)求導(dǎo)可得f′(x)=ax+1-a-
,根據(jù)題意,有f′(x)=ax+1-a-
≥0,變形可得a(x-1)≥-
,結(jié)合x的范圍,可得a≥-
,由反比例函數(shù)的性質(zhì),可得答案;
(2)對f(x)求導(dǎo)變形可得f′(x)=(ax+1)•
,解令f′(x)=0,可得x的值,進(jìn)而分①當(dāng)a<-1,②當(dāng)a=-1③當(dāng)-1<a<0,④當(dāng)a=0,⑤a>0,五種情況討論f′(x)≥0的解集,綜合可得答案.
解答:解:(1)根據(jù)題意,函數(shù)定義域?yàn)閧x|x>0},
f′(x)=ax+1-a-
,
已知函數(shù)在區(qū)間(2,4)上存在單調(diào)遞增區(qū)間,
由f′(x)=ax+1-a-
≥0有解,有a(x-1)≥-
又由2<x<4,則x-1>0,
則有a≥-
>-
,
故a的取值范圍是(-
,+∞).
(2)f′(x)=ax+1-a-
=(ax+1)•
,
令f′(x)=0,可得x=0、-1、或-
,
①當(dāng)a<-1時(shí),由f′(x)≥0得-
≤x≤1,f(x)的單調(diào)增區(qū)間為[-
,1];
②當(dāng)a=-1時(shí),f′(x)=-
≤0,f(x)無單調(diào)增區(qū)間;
③當(dāng)-1<a<0時(shí),由f′(x)≥0得1≤x≤-
,f(x)的單調(diào)增區(qū)間為[1,-
];
④當(dāng)a=0時(shí),由f′(x)=
≥0得x≥1,f(x)的單調(diào)增區(qū)間為[1,+∞);
⑤當(dāng)a>0時(shí),由f′(x)=(ax+1)•
≥0得x≥1,f(x)的單調(diào)增區(qū)間為[1,+∞).
綜上所述當(dāng)a<-1時(shí),f(x)的單調(diào)增區(qū)間為[-
,1];
當(dāng)a=-1時(shí),f(x)無單調(diào)增區(qū)間;
當(dāng)-1<a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,-
];
當(dāng)a≥0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞).