【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點(diǎn). (Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)求證:AQ∥平面PCD.

【答案】證明:(Ⅰ)∵PA⊥平面ABCD,AC,AB平面ABCD, ∴PA⊥AC,PA⊥AB,
∵PB⊥AC,AP⊥AC,PA,PB平面PAB,PA∩PB=P,
∴AC⊥平面PAB,
∵AB平面PAB,
∴AC⊥AB,PA⊥AB,PA,AC平面PAC,PA∩AC=A;
∴AB⊥平面PAC.
(Ⅱ)取PC中點(diǎn)E,連結(jié)QE,ED,
∵Q是線段PB的中點(diǎn),E是PC的中點(diǎn),
∴QE∥BC,BC=2AD,
∴QE∥AD,QE=AD,
∴四邊形AQED是平行四邊形,
∴AQ∥DE,
∵AQ∥ED,ED平面PCD,
∴AQ∥平面PCD.

【解析】(Ⅰ)根據(jù)線面垂直的性質(zhì)及PA⊥平面ABCD推斷出PA⊥AC,PA⊥AB,進(jìn)而利用PB⊥AC,推斷出AC⊥平面PAB,利用線面垂直性質(zhì)可知AC⊥AB,再根據(jù)PA⊥AB,PA,AC平面PAC,PA∩AC=A推斷出AB⊥平面PAC.(Ⅱ)取PC中點(diǎn)E,連結(jié)QE,ED,推斷出QE為中位線,判讀出QE∥BC,BC=2AD,進(jìn)而可知QE∥AD,QE=AD,判斷出四邊形AQED是平行四邊形,進(jìn)而可推斷出AQ∥DE,最后根據(jù)線面平行的判定定理證明出AQ∥平面PCD.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的判定的理解,了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx)+b(A>0,ω>0)的最大值為2,最小值為0,其圖象相鄰兩對稱軸間的距離為2,則f(1)+f(2)+…+f(2008)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)在給定直角坐標(biāo)系內(nèi)直接畫出f(x)的草圖(不用列表描點(diǎn)),并由圖象寫出函數(shù) f(x)的單調(diào)減區(qū)間;

(2)當(dāng)m為何值時(shí)f(x)+m=0有三個(gè)不同的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是(﹣∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x<0時(shí),函數(shù)的部分圖象如圖所示,則不等式xf(x)<0的解集是(

A.(﹣2,﹣1)∪(1,2)
B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(1)求的方程;

(2)是否存在直線相交于兩點(diǎn),且滿足:①為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)五邊形中,

,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.

(1)求證:平面平面

(2)若四棱柱的體積為,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選課意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.

圖中,課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組”).

(Ⅰ)在“組”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)某地舉辦自然科學(xué)營活動,學(xué)校要求:參加活動的學(xué)生只能是“組”中選擇

程或課程的同學(xué),并且這些同學(xué)以自愿報(bào)名繳費(fèi)的方式參加活動. 選擇課程的學(xué)生中有人參加科學(xué)營活動,每人需繳納元,選擇課程的學(xué)生中有人參加該活動,每人需繳納元.記選擇課程和課程的學(xué)生自愿報(bào)名人數(shù)的情況為,參加活動的學(xué)生繳納費(fèi)用總和為元.

①當(dāng)時(shí),寫出的所有可能取值;

②若選擇課程的同學(xué)都參加科學(xué)營活動,求元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為為直徑的圓O過橢圓E的上頂點(diǎn)D,直線DB與圓O相交得到的弦長為.設(shè)點(diǎn),連接PA交橢圓于點(diǎn)C.

(I)求橢圓E的方程;

(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域和值域;
(2)判斷函數(shù)f(x)的奇偶性,并證明.

查看答案和解析>>

同步練習(xí)冊答案