已知A(2,0),B(0,2),C(cosα,sinα),且0<α<π
(1)若|
OA
+
OC
|=
7
,求
OB
OC
的夾角;
(2)若AC⊥BC,求tanα的值.
(1)∵
OA
+
OC
=(2+cosα,sinα),|
OA
+
OC
|=
7

∴(2+cosα)2+sin2a=7,
∴cosa=
1
2
又α∈(0,π),
∴a=
π
3
,即∠AOC=
π
3

又∠AOB=
π
2
,∴OB與OC的夾角為
π
6
;
(2)
AC
=(cosa-2,sina),
BC
=(cosa,sina-2),
∵AC⊥BC,∴
AC
BC
=0,cosa+sina=
1
2

∴(cosa+sina)2=
1
4
,∴2sinacosa=-
3
4

∵a∈(0,π),∴a∈(
π
2
,π)
,
又由(cosa-sina)2=1-2sinacosa=
7
4
,cosa-sina<0,
∴cosa-sina=-
7
2
②由①、②得cosa=
1-
7
4
,sina=
1+
7
4
,
從而tana=-
4+
7
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知A(-
2
,0),B(
2
,0),CD⊥AB于D,△ABC的垂心為H,且
CD
=2
CH

(Ⅰ)求點H的軌跡方程;
(Ⅱ)若過定點F(0,2)的直線交曲線E于不同的兩點G,H(點G在F,H之間),且滿足
FG
FH
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,0),B(2,0)為橢圓C的左右頂點,F(xiàn)(1,0)為其右焦點.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)過點A的直線l與橢圓C的另一個交點為P(不同于A,B),與橢圓在點B處的切線交于點D.當(dāng)直線l繞點A轉(zhuǎn)動時,試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(0,2),C(cosα,sinα),且α∈(0,π).
(1)若|
OA
+
OC
|=
7
,求
OB
OC
的夾角
的余弦值.
(2)若
AC
BC
,求tanα的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A(-2,0),B(2,0),等腰梯形ABCD滿足|AB|=-2|CD|,E為AC上一點,且
AE
EC
.又以A、B為焦點的雙曲線過C、D、E三點.若λ∈[
2
3
,
3
4
]
,則雙曲線離心率e的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(3,3),直線l⊥AB,則直線l的斜率k=( 。
A、-3
B、3
C、-
1
3
D、
1
3

查看答案和解析>>

同步練習(xí)冊答案