在直角坐標系中,點
,點
為拋物線
的焦點,
線段恰被拋物線
平分.
(Ⅰ)求的值;
(Ⅱ)過點作直線
交拋物線
于
兩點,設直線
、
、
的斜率分別為
、
、
,問
能否成公差不為零的等差數(shù)列?若能,求直線
的方程;若不能,請說明理由.
(Ⅰ)(Ⅱ)
,
,
能成公差不為零的等差數(shù)列,直線
的方程為:
解析試題分析:(Ⅰ)焦點的坐標為
,線段
的中點
在拋物線
上,
∴,
,∴
(
舍) . ……3分
(Ⅱ)由(Ⅰ)知:拋物線:
,
.
設方程為:
,
、
,則
由得:
,
,∴
或
.
, ……5分
假設,
,
能成公差不為零的等差數(shù)列,則
.
而, ……7分
,∴
,
,解得:
(符合題意),
(此時直線
經過焦點
,
,不合題意,舍去),
直線的方程為
,即
.
故,
,
能成公差不為零的等差數(shù)列,直線
的方程為:
. ……10分
考點:本小題主要考查直線與圓錐曲線的綜合應用.
點評:解決直線與圓錐曲線的位置,一般免不了聯(lián)立直線方程和圓錐曲線方程,此時運算量比較大,要仔細運算,而且聯(lián)立之后,不要忘記驗證判別式大于零.
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,如圖,已知橢圓C:的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、PB與直線l:y=-2分別交于點M、N.
(1)設直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
經過點
其離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
相交于A、B兩點,以線段
為鄰邊作平行四邊形OAPB,其中頂點P在橢圓
上,
為坐標原點.求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)已知橢圓的左、右焦點分別為F1、F2,其中F2也是拋物線
的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的兩焦點在
軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線
交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線頂點在原點,焦點在x軸上,又知此拋物線上一點A(4,m)到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,的兩個頂點
、
的坐標分別是(-1,0),(1,0),點
是
的重心,
軸上一點
滿足
,且
.
(1)求的頂點
的軌跡
的方程;
(2)不過點的直線
與軌跡
交于不同的兩點
、
,當
時,求
與
的關系,并證明直線
過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分16分)
已知橢圓的離心率為
,一條準線
.
(1)求橢圓的方程;
(2)設O為坐標原點,是
上的點,
為橢圓
的右焦點,過點F作OM的垂線與以OM為直徑的圓
交于
兩點.
①若,求圓
的方程;
②若是l上的動點,求證:點
在定圓上,并求該定圓的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com