如圖,正方體ABCD_A1B1C1D1中,AA1=2,E為棱CC1的中點,F(xiàn)為棱BB1的中點.
(1)求證:B1D1⊥AE.
(2)求證:平面ACF∥平面B1DE.

【答案】分析:(1)先證BD⊥面ACE,,再利用線面垂直的性質(zhì),即可證得結(jié)論;
(2)連接AF、CF、EF,由E、F是CC1、BB1的中點,易得AF∥ED,CF∥B1E,從而可證平面ACF∥面B1DE.
解答:證明:(1)連接BD,則BD∥B1D1,(1分)
∵ABCD是正方形,∴AC⊥BD.
∵CE⊥面ABCD,∴CE⊥BD.
又AC∩CE=C,∴BD⊥面ACE.(4分)
∵AE?面ACE,∴BD⊥AE,
∴B1D1⊥AE.(5分)
(2)連接AF、CF、EF.
∵E、F是CC1、BB1的中點,∴CE平行且等于B1F,
∴四邊形B1FCE是平行四邊形,
∴CF∥B1E,CF?平面B1DE,B1E?平面B1DE(7分)
∴CF∥平面B1DE
∵E,F(xiàn)是CC1、BB1的中點,∴EF平行且等于BC
又BC平行且等于AD,∴EF平行且等于AD.
∴四邊形ADEF是平行四邊形,∴AF∥ED,
∵AF?平面B1DE,ED?平面B1DE(7分)
∴AF∥平面B1DE
∵AF∩CF=F,
∴平面ACF∥平面B1DE.(9分)
點評:本題主要考查線面垂直和面面平行,解題的關(guān)鍵是正確運用線面垂直和面面平行的判定定理,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點.證明:向量
A1B
、
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當(dāng)GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊答案