設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是   
①m⊥α,n?β,m⊥n⇒α⊥β  ②α∥β,m⊥α,n∥β⇒m⊥n
③α⊥β,m⊥α,n∥β⇒m⊥n  ④α⊥β,α∩β=m,n⊥m⇒n⊥β
【答案】分析:根據(jù)有關(guān)定理中的諸多條件,對每一個命題進(jìn)行逐一進(jìn)行是否符合定理條件去判定,不正確的只需取出反例即可.
解答:解:①錯,不符合面面垂直的判斷定理的條件;
②由空間想象易知命題正確;
③錯,兩直線可平行;
④錯,由面面垂直的性質(zhì)定理可知只有當(dāng)直線n在平面α內(nèi)時命題才成立.
故答案為②
點評:本題主要考查了直線與平面之間的位置關(guān)系,以及平面與平面的位置關(guān)系,考查空間想象能力、運算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)m,n是兩條不同的直線,α,β,γ是三個互不相同的平面,給出下列命題:①若m?β,α⊥β,則m⊥α;②若α∩γ=m,β∩γ=n,α∥β,則m∥n;③若m∥n,m⊥α,n⊥β,則α∥β;④若α⊥γ,β⊥γ,則α∥β,其中正確的命題的序號為
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面.有下列四個命題:
①若m?β,α⊥β,則m⊥α;
②若α∥β,m?α,則m∥β;
③若n⊥α,n⊥β,m⊥α,則m⊥β;
④若α⊥γ,β⊥γ,m⊥α,則m⊥β.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、4.設(shè)m、n是兩條不同的直線,α、β是兩相沒的平面,則下列命題中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴溪市模擬)設(shè)m、n是兩條不同的直線α,β,γ,是三個不同的平面,下列四個命題中正確的序號是( 。
①若m⊥α,n∥α,則m⊥n     
②若α⊥γ,β⊥γ,則α∥β   
③若m∥α,n∥α,則m∥n    
④若α∥β,β∥γ,m⊥α,則m⊥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面.考查下列命題,其中不正確的命題有
①③④
①③④
.(填上所有符合條件命題的序號)
①m⊥α,n?β,m⊥n⇒α⊥β;      ②α∥β,m⊥α,n∥β⇒m⊥n;
③α⊥β,m⊥α,n∥β⇒m⊥n;       ④α⊥β,α∩β=m,n⊥m⇒n⊥β.

查看答案和解析>>

同步練習(xí)冊答案