(1)已知△ABC中,角A,B,C的對邊分別是a,b,c,數(shù)學(xué)公式數(shù)學(xué)公式=3,a=2數(shù)學(xué)公式,b+c=6,求cosA.
(2)設(shè)f(x)=-2cos2數(shù)學(xué)公式x+sin(數(shù)學(xué)公式x-數(shù)學(xué)公式)+1,當(dāng)x∈[-數(shù)學(xué)公式,0]時,求y=f(x)的最大值.

解:(1)∵=3,∴bccosA=3
又a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA,a=2,b+c=6
∴20=36-2bc-6∴
∴bc=5
∴cosA=
(2)f(x)=-2+sin()+1==sin(
∵x∈[-,0],

,即x=0時,函數(shù)的最大值是-
分析:(1)利用向量的數(shù)量積公式,結(jié)合余弦定理,可求cosA的值;
(2)先利用二倍角公式、輔助角公式化簡函數(shù),再根據(jù)角的范圍,利用正弦函數(shù)的單調(diào)性,即可求得函數(shù)的最大值.
點評:本題考查數(shù)量積公式、余弦定理,考查三角函數(shù)的性質(zhì),解題的關(guān)鍵是正確化簡函數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列一些說法:
(1)已知△ABC中,acosB=bcosA,則△ABC為等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,則△ABC為等腰或直角三角形.
(3)已知數(shù)列{an}滿足
a
2
n+1
a
2
n
=p(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”.若數(shù)列{an}是等方比數(shù)列則數(shù)列{an}必是等比數(shù)列.
(4)等比數(shù)列{an}的前3項的和等于首項的3倍,則該等比數(shù)列的公比為-2.
其中正確的說法的序號依次是
(2)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,錯誤命題的序號是
(1)(2)(4)
(1)(2)(4)

(1)已知△ABC中,a>b?A>B?sinA>sinB.
(2)已知△ABC中,a=3,b=5,c=7,S△ABC=
15
3
4

(3)已知數(shù)列{an}中,a1=1,an+1=2an+1,則其前5項的和為31.
(4)若數(shù)列{an}的前n項和為Sn=2an-1,則an=2n,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山二模)(1)已知△ABC中,角A,B,C的對邊分別是a,b,c,
AB
AC
=3,a=2
5
,b+c=6,求cosA.
(2)設(shè)f(x)=-2cos2
π
8
x+sin(
π
4
x-
π
6
)+1,當(dāng)x∈[-
2
3
,0]時,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山二模)(1)已知△ABC中,角A,B,C的對邊分別是a,b,c,
AB
AC
=3,a=2
5
,b+c=6,求cosA.
(2)設(shè)f(x)=-2cos2
π
8
x+sin(
π
4
x-
π
6
)+1,y=g(x)與y=f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[-
2
3
,0]時,求y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1-20,已知△ABC中,AD是BC邊上的中線,F是AD上一點,且AF∶FD=1∶5,連結(jié)CF并延長交AB于E,則AE∶EB=___________.

圖1-20

查看答案和解析>>

同步練習(xí)冊答案