1.已知a>1,x≥1,y≥1,且loga2x+loga2y=loga(a4x4)+loga(a4y4),則loga(xy)的取值范圍是[$2\sqrt{3}-2$,$4+4\sqrt{2}$].

分析 根據(jù)對(duì)數(shù)的基本運(yùn)算進(jìn)行化簡(jiǎn),利用換元法轉(zhuǎn)化為三角函數(shù),利用三角函數(shù)的有界限求解.

解答 解:由題意:loga2x+loga2y=loga(a4x4)+loga(a4y4),
化簡(jiǎn)可得:loga2x-4logax+loga2y-4logay=8
令m=logax,n=logay,則有:∵n2+m2-4m-4n=8.
loga(xy)=n+m.
∵a>1,x≥1,y≥1,
∴n≥0,m≥0,
∵n2+m2-4m-4n=8.
⇒(n-2)2+(m-2)2=42表示為(2,2)為圓心,半徑為4的圓.
令m+n=Z,(Z≥0),則n+m-Z=0.
數(shù)形結(jié)合法:如圖:當(dāng)直線m+n-Z=0過(guò)B點(diǎn)或A點(diǎn)時(shí)最。
當(dāng)直線m+n-Z=0過(guò)C點(diǎn)時(shí)最大.
可知:A(2$\sqrt{3}-2$,0)
故得Zmin=2$\sqrt{3}-2$,即為loga(xy)min=$2\sqrt{3}-2$.
過(guò)C點(diǎn)時(shí),直線與圓相切,d=r=4=$\frac{|4-Z|}{\sqrt{2}}$
解得:Zmax=$4+4\sqrt{2}$,即為loga(xy)max=$4+4\sqrt{2}$.
所以:loga(xy)的取值范圍是[$2\sqrt{3}-2$,$4+4\sqrt{2}$].
故答案為:[$2\sqrt{3}-2$,$4+4\sqrt{2}$].

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的化簡(jiǎn)計(jì)算和圓與直線的位置關(guān)系.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-\frac{1}{x},}&{x>0}\\{{x^2},}&{x≤0}\end{array}}$,則f(2)+f(-2)=( 。
A.0B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=b•ax(a>0,且a≠1,b∈R)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)設(shè)g(x)=$\frac{1}{f(x)+3}$-$\frac{1}{6}$,確定函數(shù)g(x)的奇偶性;
(2)若對(duì)任意x∈(-∞,1],不等式($\frac{a}$)x≥2m+1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將一條5米長(zhǎng)的繩子隨機(jī)的切斷為兩段,則兩段繩子都不短于1米的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x}{ax+b}$,a,b∈R,a≠0,b≠0,f(1)=$\frac{1}{2}$,且方程f(x)=x有且僅有一個(gè)實(shí)數(shù)解;
(1)求a、b的值;
(2)當(dāng)x∈($\frac{1}{4}$,$\frac{1}{2}$]時(shí),不等式(x+1)•f(x)>m(m-x)-1恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)h(x)=4x2-kx-8在[5,20]上是減函數(shù),則k的取值范圍是(-∞,40].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)的圖象如圖所示,則不等式x•f(x)>0的解集為(  )
A.(-∞,-1)∪(2,+∞)B.(-∞,-1)∪(0,2)C.(-1,0)∪(2,+∞)D.(-1,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知圓O:x2+y2=1和點(diǎn)A(-2,0),若頂點(diǎn)B(b,0)(b≠-2)和常數(shù)λ滿足:對(duì)圓O上任意一點(diǎn)M,都有|MB|=λ|MA|,則λ-b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.從一批土雞蛋中,隨機(jī)抽取n個(gè)得到一個(gè)樣本,其重量(單位:克)的頻數(shù)分布表如表:
分組(重量)[80,85)[85,90)[90,95)[95,100]
頻數(shù)(個(gè))1050m15
已知從n個(gè)土雞蛋中隨機(jī)抽取一個(gè),抽到重量在在[90,95)的土雞蛋的根底為$\frac{4}{19}$
(1)求出n,m的值及該樣本的眾數(shù);
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個(gè),再?gòu)倪@5個(gè)土雞蛋中任取2 個(gè),其重量分別是g1,g2,求|g1-g2|≥10概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案