證明:連BD,在△ABC中,
E,H是AB,AD的中點
EH
BD且EH=
,同理可證:FG∥BD且FG=
EH∥FG且EH="FG "
四邊形EFGH是平行四邊形
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在五面體,ABCDF中,點O是矩形ABCD的對角線的交點,面ABF是等邊三角形,棱EF=
.
(1)證明EO∥平面ABF;
(2)問
為何值時,有OF⊥ABE,試證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
P-
ABCD的底面是矩形,側面
PAD是正三角形,且側面
PAD⊥底面
ABCD,
E為側棱
PD的中點.
(I)試判斷直線
PB與平面
EAC的關系
(文科不必證明,理科必須證明);
(II)求證:
AE⊥平面
PCD;
(III)若
AD=
AB,試求二面角
A-
PC-
D的正切值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在五棱錐
中,
,
.
(1)求證:
;
(2)求點E到面SCD的距離;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖3所示,在直三棱柱
中,
,
,
,
.
(Ⅰ)證明:
平面
;
(Ⅱ)若
是棱
的中點,在棱
上是否存在一點
,使
平面
?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如右圖,在棱長都等于1的三棱錐
中,
是
上的一點,過
F作平行于棱
AB和棱
CD的截面,分別交
BC,AD,BD于
E,
G,
H(1) 證明截面
EFGH是矩形;
(2)
在
的什么位置時,截面面積最大,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P—ABCD中,底面ABCD是∠DAB=60°且邊長為1的菱形。側面PAD是正三角形,其所在側面垂直底面ABCD,G是AD中點。
(1)求異面直線BG與PC所成的角;
(2)求點G到面PBC的距離;
(3)若E是BC邊上的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖1,在多面體
ABCD—
A1B1C1D1中,上、下底面平行且均為矩形,相對的側面與同一底面所成的二面角大小相等,側棱延長后相交于
E,
F兩點,上、下底面矩形的長、寬分別為
c,
d與
a,
b,且
a>
c,
b>
d,兩底面間的距離為
h。
(Ⅰ)求側面
ABB1A1與底面
ABCD所成二面角的大小;
(Ⅱ)證明:
EF∥面
ABCD;
(Ⅲ)在估測該多面體的體積時,經常運用近似公式
V估=
S中截面·
h來計算.已知它的體積公式是
V=
(
S上底面+4
S中截面+
S下底面),試判斷
V估與
V的大小關系,并加以證明。
(注:與兩個底面平行,且到兩個底面距離相等的截面稱為該多面體的中截面)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
用一個平面去截一個幾何體,如果截面是三角形,則這個幾何體可能是___________.
查看答案和解析>>