記(bni=i++log2,其中i,n∈N*,i≤n,如(bn3=3++log2,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值;   
(Ⅱ)求Sn的表達(dá)式;
(Ⅲ)已知數(shù)列{an}滿足Sn•an=1,設(shè)數(shù)列{an}的前n項和為Tn,若對一切n∈N*,不等式恒成立,求實數(shù)λ的最大值.
【答案】分析:(I)由(bni=i++log2,知(bn1+(bnn=(1++)+(n+),由此能求出(bn1+(bnn=n+2.
(Ⅱ)由Sn=(bn1+(bn2+(bn3+…+(bnn,知Sn=(bnn+(bnn-1+…+(bn2+(bn1,從而得到2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1=n(n+2),由此能求出Sn的表達(dá)式.
(Ⅲ)由=,知=,故恒成立,從而得到,由此能求出實數(shù)λ的最大值.
解答:解:(I)∵(bni=i++log2,
∴(bn1+(bnn=(1++)+(n+
=n+2+
=n+2.
(Ⅱ)∵Sn=(bn1+(bn2+(bn3+…+(bnn
Sn=(bnn+(bnn-1+…+(bn2+(bn1,
∴2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1
=n(n+2),

(Ⅲ)∵=,

=,
當(dāng)恒成立.
恒成立,
∴11λ-3n2≤-11(2n+3)恒成立,
恒成立,
,
,n∈N*
∴n=4時,取得最小值
,實數(shù)λ的最大值為
點評:本題考查數(shù)列與不等式的綜合應(yīng)用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點,易錯點是的推導(dǎo).解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某數(shù)列的前三項分別是下表第一、二、三行中的某一個數(shù),且前三項中任何兩個數(shù)不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 14 4 6
第三行 18 9 8
若此數(shù)列是等差數(shù)列,記作{an},若此數(shù)列是等比數(shù)列,記作{bn}.
(I)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(II)將數(shù)列{an}的項和數(shù)列{bn}的項依次從小到大排列得到數(shù)列{cn},數(shù)列{cn}的前n項和為Sn,試求最大的自然數(shù)M,使得當(dāng)n≤M時,都有Sn≤2012.
(Ⅲ)若對任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都二模)記(bni=i+
1
2
+log2
i
n+1-i
,其中i,n∈N*,i≤n,如(bn3=3+
1
2
+log2
3
n+1-3
,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值;   
(Ⅱ)求Sn的表達(dá)式;
(Ⅲ)已知數(shù)列{an}滿足Sn•an=1,設(shè)數(shù)列{an}的前n項和為Tn,若對一切n∈N*,不等式
11λ-3n2
(n+1)(n+2)
≤11(Tn-
3
2
)
恒成立,求實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

記(bni=i+數(shù)學(xué)公式+log2數(shù)學(xué)公式,其中i,n∈N*,i≤n,如(bn3=3+數(shù)學(xué)公式+log2數(shù)學(xué)公式,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值; 
(Ⅱ)求Sn的表達(dá)式;
(Ⅲ)已知數(shù)列{an}滿足Sn•an=1,設(shè)數(shù)列{an}的前n項和為Tn,若對一切n∈N*,不等式數(shù)學(xué)公式恒成立,求實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省鹽城中學(xué)高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知某數(shù)列的前三項分別是下表第一、二、三行中的某一個數(shù),且前三項中任何兩個數(shù)不在下表的同一列.
第一列第二列第三列
第一行3210
第二行1446
第三行1898
若此數(shù)列是等差數(shù)列,記作{an},若此數(shù)列是等比數(shù)列,記作{bn}.
(I)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(II)將數(shù)列{an}的項和數(shù)列{bn}的項依次從小到大排列得到數(shù)列{cn},數(shù)列{cn}的前n項和為Sn,試求最大的自然數(shù)M,使得當(dāng)n≤M時,都有Sn≤2012.
(Ⅲ)若對任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案