在四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=CD=a.
(1)求證:面PAD⊥面PAC;
(2)求二面角D-PB-C的余弦值;
(3)求點(diǎn)D到平面PBC的距離.

【答案】分析:(1)證明面PAD⊥面PAC,利用面面垂直的判定,證明AC⊥平面PAD即可;
(2)建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn)與向量,求出平面PBC、平面PBD的法向量,利用向量的夾角公式,即可求得結(jié)論;
(3)設(shè)D到平面PBC的距離為d,則d=||•|cos<,>|=a,由此可得結(jié)論.
解答:(1)證明:設(shè)PA=AB=BC=CD=a,連接AC,
在RT△ABC中,AC=a,
在直角梯形ABCD中,AD=a,
所以在△DAC中有:AD2+AC2=CD2,∴AC⊥AD
又∵PA⊥底面ABCD,AC?底面ABCD,
∴PA⊥AC
∵PA∩AD=A
∴AC⊥平面PAD
∵AC?平面PAC
∴面PAD⊥面PAC                 …(4分)
(2)解:以B為原點(diǎn),BA,BC所在直線(xiàn)分別為x軸,y軸建立如圖所示坐標(biāo)系,則:A(a,0,0),B(0,0,0),C(0,a,0),D(2a,a,0),P(a,0,a),=(a,0,a),=(0,a,0),=(2a,a,0)
設(shè)平面PBC的法向量為=(x′,y′,z′),平面PBD的法向量為=(x,y,z),
,,得:ax′+az′=0,y′=0,ax+az=0,2ax+ay=0
∴z′=-x′,y′=0,y=-2x,z=-x
∴取=(1,0,-1),=(1,-2,-1)
∴cos<,>==
設(shè)二面角D-PB-C的平面角θ,由圖形易知θ為銳角,∴cosθ=|cos<,>|=…(8分)
(以B為原點(diǎn),AD,AC所在直線(xiàn)為x軸y軸建立平面直角坐標(biāo)系參照給分)
(3)解:由題意cos<,>==,||=a
設(shè)D到平面PBC的距離為d,則d=||•|cos<,>|=a…(12分)
(利用體積法求得正確結(jié)果參照賦分)
點(diǎn)評(píng):本題考查面面垂直,考查面面角,考查點(diǎn)到面的距離,解題的關(guān)鍵是掌握面面垂直的判定,正確運(yùn)用向量知識(shí)解決立體幾何問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成角的大。
(3)求二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于點(diǎn)N,M是PD中點(diǎn).
(1)用空間向量證明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直線(xiàn)CD與平面ACM所成的角的正弦值.
(3)求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點(diǎn)
(1)求證:直線(xiàn)MO∥平面PAB;
(2)求證:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求證:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都模擬)如圖,在四棱錐P-ABCD中,底面ABCD為正方形,且PD⊥平面ABCD,PD=AB=1,EF分別是PB、AD的中點(diǎn),
(I)證明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案