【題目】將正方形沿對角線折成直二面角,有如下四個結(jié)論:

1;(2是等邊三角形;

3與平面所成的角為60°;(4所成的角為.

其中錯誤的結(jié)論是(

A.1B.2C.3D.4

【答案】C

【解析】

1)取的中點,則,利用線面垂直的判定定理可證,再由直線與平面垂直的性質(zhì)定理可知正確;

2)利用勾股定理求出棱長AC,即可判定正確;

3)利用定義法可判定與平面所成的角為,應(yīng)為45°,故不正確;

4)由空間向量的方式計算異面直線所成角.

的中點,則,.

平面,平面

.

平面,,故(1)正確;

設(shè)正方形邊長為,則,.

,

為二面角所成平面角,

又二面角為直二面角,則,

.

為等邊三角形,故(2)正確;

,則,

,,平面,平面,

平面,

與面所成的角,為45°,故(3)不正確;

為坐標(biāo)原點,、分別為,軸建立直角坐標(biāo)系,

,,,.

,.

,即所成的角為60°,故(4)正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新中國成立70周年以來,黨中央、國務(wù)院高度重視改善人民生活,始終把脫貧致富和提高人民生活水平作為一切工作的出發(fā)點和落腳點新疆某地區(qū)為了帶動當(dāng)?shù)亟?jīng)濟發(fā)展,大力發(fā)展旅游業(yè),如圖是2015—2019年到該地區(qū)旅游的游客數(shù)量(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是(

A.2015—2019年到該地區(qū)旅游的人數(shù)與年份成正相關(guān)

B.2019年到該地區(qū)旅游的人數(shù)是2015年的12

C.2016—2019年到該地區(qū)旅游的人數(shù)平均值超過了220萬人次

D.2016年開始,與上一年相比,2019年到該地區(qū)旅游的人數(shù)增加得最多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),a是非零常數(shù).

1)若a1,求不等式fx)≤5的解集;

2)若a0,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中,面為直角梯形, ,平面平面 , 是邊長為2的正三角形.

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒屬于屬的冠狀病毒,人群普遍易感,病毒感染者一般有發(fā)熱咳嗽等臨床表現(xiàn),現(xiàn)階段也出現(xiàn)無癥狀感染者.基于目前的流行病學(xué)調(diào)查和研究結(jié)果,病毒潛伏期一般為1-14天,大多數(shù)為3-7.為及時有效遏制病毒擴散和蔓延,減少新型冠狀病毒感染對公眾健康造成的危害,需要對與確診新冠肺炎病人接觸過的人員進行檢查.某地區(qū)對與確診患者有接觸史的1000名人員進行檢查,檢查結(jié)果統(tǒng)計如下:

發(fā)熱且咳嗽

發(fā)熱不咳嗽

咳嗽不發(fā)熱

不發(fā)熱也不咳嗽

確診患病

200

150

80

30

確診未患病

150

150

120

120

1)能否在犯錯率不超過0.001的情況下,認(rèn)為新冠肺炎密切接觸者有發(fā)熱癥狀與最終確診患病有關(guān).

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.645

7.879

10.828

2)在全國人民的共同努力下,尤其是全體醫(yī)護人員的辛勤付出下,我國的疫情得到較好控制,現(xiàn)階段防控重難點主要在境外輸入病例和無癥狀感染者(即無相關(guān)臨床表現(xiàn)但核酸檢測或血清特異性免疫球蛋白M抗體檢測陽者).根據(jù)防控要求,無癥狀感染者雖然還沒有最終確診患2019新冠肺炎,但與其密切接觸者仍然應(yīng)當(dāng)采取居家隔離醫(yī)學(xué)觀察14天,已知某人曾與無癥狀感染者密切接觸,而且在家已經(jīng)居家隔離10天未有臨床癥狀,若該人員居家隔離第天出現(xiàn)臨床癥狀的概率為,兩天之間是否出現(xiàn)臨床癥狀互不影響,而且一旦出現(xiàn)臨床癥狀立刻送往醫(yī)院核酸檢查并采取必要治療,若14天內(nèi)未出現(xiàn)臨床癥狀則可以解除居家隔離,求該人員在家隔離的天數(shù)(含有臨床癥狀表現(xiàn)的當(dāng)天)的分布列以及數(shù)學(xué)期望值.(保留小數(shù)點后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標(biāo)準(zhǔn),BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI28時為肥胖.某地區(qū)隨機調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

1)求被調(diào)查者中肥胖人群的BMI平均值

2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合計

高血壓

非高血壓

合計

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點,x軸非負半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,交曲線E于點A,B,交曲線E于點C,D.

1)求曲線E的普通方程及極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,且處取得極值.

)若關(guān)于的方程在區(qū)間上有解,求的取值范圍;

)證明:

查看答案和解析>>

同步練習(xí)冊答案