【題目】四面體ABCD中,AB=CD=6,其余的棱長均為5,則與該四面體各個表面都相切的內(nèi)切球的半徑長等于_____.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,沿其對角線BD將折起至,使得點在平面ABCD內(nèi)的射影恰為點B,點E為的中點.
(Ⅰ)求證:平面BDE;
(Ⅱ)若,求與平面BDE所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來越受到社會的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學(xué)生成績與選修生涯規(guī)劃課程的關(guān)系,隨機抽取50名學(xué)生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(Ⅰ)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有的把握認(rèn)為“學(xué)生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;
(Ⅱ)如果從全校選修生涯規(guī)劃課的學(xué)生中隨機地抽取3名學(xué)生,求抽到成績不夠優(yōu)秀的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)作概率計算).
參考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線()上的兩個動點和,焦點為F.線段AB的中點為,且A,B兩點到拋物線的焦點F的距離之和為8.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計 | |
線上學(xué)習(xí)時間不少于5小時 | 4 | 19 | |
線上學(xué)習(xí)時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;
(2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時間不少于5小時和線上學(xué)習(xí)時間不足5小時的學(xué)生共5名,若在這5名學(xué)生中隨機抽取2人,求至少1人每周線上學(xué)習(xí)時間不足5小時的概率.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足:a1=1,且當(dāng)n∈N*時,an3+an2(1﹣an+1)+1=an+1.
(1)求a2,a3的值;
(2)比較an與an+1的大小,并證明你的結(jié)論.
(3)若bn=(1),其中n∈N*,證明:0<b1+b2+……+bn<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線交橢圓于,兩點(為坐標(biāo)原點),的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點為,短軸長為2,過定點的直線交橢圓于不同的兩點、(點在點,之間).
(1)求橢圓的方程;
(2)若,求實數(shù)的取值范圍;
(3)若射線交橢圓于點(為原點),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為矩形,側(cè)面平面,.,若點M為的中點,則下列說法正確的個數(shù)為( )
(1)平面 (2)四棱錐的體積為12
(3)平面 (4)四棱錐外接球的表面積為
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com