已知拋物線的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為   
【答案】分析:拋物線的焦點為F(1,0),準線方程為l:x=-1,由題設條件能推導出M點坐標為(-1,4),|AF|=|AM|,從而得到∠MAF的平分線所在的直線就是線段MF的垂直平分線,由此能求出結(jié)果.
解答:解:拋物線的焦點為F(1,0),準線方程為l:x=-1,
點A(4,4),由拋物線的定義知|AF|=|AM|,
∴∠MAF的平分線所在的直線就是線段MF的垂直平分線,
∵過點A(4,4)作直線l:x=-1垂線,垂足為M,
∴M點坐標為(-1,4),
kAF==-2,
∴∠MAF的平分線的方程為y-4=,即x-2y+4=0.
故答案為:x-2y+4=0.
點評:本題考查直線方程的求法,解題時要認真審題,仔細解答,注意拋物線的簡單性質(zhì)、斜率計算公式、點斜式方程等知識點的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年浙江省高三上學期第三次統(tǒng)練文科數(shù)學試卷(解析版) 題型:解答題

如圖,已知拋物線的焦點為F,過F的直線交拋物線于M、N兩點,其準線與x軸交于K點.

(1)求證:KF平分∠MKN;

(2)O為坐標原點,直線MO、NO分別交準線于點P、Q,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧沈陽二中等重點中學協(xié)作體高三領航高考預測(二)理數(shù)學卷(解析版) 題型:填空題

已知拋物線的焦點為F,過拋物線在第一象限部分上一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交于M,若,則點P的坐標為         

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆河北省唐山市高三年級第一學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)已知拋物線的焦點為F,過點F作直線與拋物線交于A,B兩點,拋物線的準線與軸交于點C。

(1)證明:

(2)求的最大值,并求取得最大值時線段AB的長。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試(全國Ⅰ)理科數(shù)學全解全析 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)

已知拋物線的焦點為F,過點的直線相交于、兩點,點A關于軸的對稱點為D .

(Ⅰ)證明:點F在直線BD上;

(Ⅱ)設,求的內(nèi)切圓M的方程 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年黑龍江省高二上學期期末考試數(shù)學理卷 題型:選擇題

已知拋物線的焦點為F,準線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點A,且AK,垂足為K,則的面積是( 。

A 4     B        C       D 8

 

查看答案和解析>>

同步練習冊答案