13.在△ABC中,角A,B,C的對(duì)邊為a,b,c,若a2-b2+c2=$\sqrt{3}$ac,則角B為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{3}或\frac{2π}{3}$D.$\frac{π}{6}或\frac{5π}{6}$

分析 利用余弦定理表示出cosB,把已知的等式代入得出cosB的值,由∠B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出∠B的度數(shù).

解答 解:∵a2-b2+c2=$\sqrt{3}$ac,
∴由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{3}ac}{2ac}$=$\frac{\sqrt{3}}{2}$,
又∠B為三角形的內(nèi)角,
則∠B=$\frac{π}{6}$.
故選:A.

點(diǎn)評(píng) 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ex-e-x,若f(a+3)>f(2a),則a的范圍是a<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.平行四邊形ABCD中,$\overrightarrow{AB}$=(1,2),$\overrightarrow{AD}$=(-1,4),則$\overrightarrow{AC}$=(  )
A.(-3,3)B.(2,-2)C.(-2,2)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,若b=$\sqrt{3}$,c=3,B=30°,則a=( 。
A.$\sqrt{3}$B.$12\sqrt{3}$C.$\sqrt{3}或2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n≥1),則a2016=3×42014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,Sn=an+1+n,則其通項(xiàng)公式為${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{1-{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC中,a=2,∠A=60°,則△ABC的外接圓直徑為$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( 。
(1)f(x)=1,g(x)=x0      
(2)f(x)=$\root{3}{{x}^{3}}$,g(x)=$\frac{{x}^{2}}{x}$
(3)f(x)=lnxx,g(x)=elnx
(4)f(x)=$\frac{1}{|x|}$,g(x)=$\frac{1}{\sqrt{{x}^{2}}}$.
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.不等式x2-x-2>0的解集是( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-∞-2)∪(1,+∞)D.(-2,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案