已知方程x2+ax+b=0,a,b為常數(shù).
(Ⅰ)若a∈{0,1,2},b∈{0,1,2},求方程的解的個(gè)數(shù)ξ的期望;
(Ⅱ)若a,b在[0,2]內(nèi)等可能取值,求此方程有實(shí)根的概率.
(1)a取集合{0,1,2}中任一元素,b取集合{0,1,2,3}中任一元素,
∴a、b的取值情況有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),
其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值,基本事件總數(shù)為12.
當(dāng)方程x2+ax+b=0沒有解時(shí),即△=a2-4b<0,此時(shí)a、b的取值情況有(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,2),(2,3),包含的基本事件數(shù)為8.
當(dāng)方程x2+ax+b=0有一解時(shí),即△=a2-4b=0,此時(shí)a、b的取值情況有(0,0),(2,1),包含的基本事件數(shù)為2.
當(dāng)方程x2+ax+b=0有兩解時(shí),即△=a2-4b>0,此時(shí)a、b的取值情況有(1,0),(2,0),包含的基本事件數(shù)為2.
由題意知用隨機(jī)變量ξ表示方程x2+ax+b=0實(shí)根的個(gè)數(shù),所以得到ξ=0,1,2
所以P(ξ=0)=
8
12
=
2
3
,P(ξ=1)=
2
12
=
1
6
P(ξ=2)=
2
12
=
1
6
,
∴ξ的分布列為:
                     ξ                        0                           1                         2
                     p                       
2
3
                          
1
6
                       
1
6
∴ξ的數(shù)學(xué)期望為Eξ=0×
2
3
+1×
1
6
+2×
1
6
=
1
2

(2)∵a從區(qū)間[0,2]中任取一個(gè)數(shù),b從區(qū)間[0,2]中任取一個(gè)數(shù)
則試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|0≤a≤2,0≤b≤2}這是一個(gè)矩形區(qū)域,其面積SΩ=2×2=4,
設(shè)“方程x2+ax+b=0有實(shí)根”為事件A,
則事件A構(gòu)成的區(qū)域?yàn)镸={(a,b)|0≤a≤2,0≤b≤2,a2-4b≥0},由積分公式可得其面積SM=
2
3

由幾何概型的概率計(jì)算公式可得:方程有實(shí)根的概率P(A)=
2
3
4
=
1
6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次方程x2+ax+2=0.
(1)若方程的兩根α、β滿足α<2<β,求實(shí)數(shù)a的取值范圍;
(2)若兩根都小于-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+ax+b=0,a,b為常數(shù).
(Ⅰ)若a∈{0,1,2},b∈{0,1,2},求方程的解的個(gè)數(shù)ξ的期望;
(Ⅱ)若a,b在[0,2]內(nèi)等可能取值,求此方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)含絕對(duì)值的不等式、不等式的證明專項(xiàng)訓(xùn)練(河北) 題型:填空題

已知方程x2-ax+b=0的兩根分別為1和2,則不等式≤1的解集為________(用區(qū)間表示).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年江蘇省蘇州市高三教學(xué)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知方程x2+ax+b=0,a,b為常數(shù).
(Ⅰ)若a∈{0,1,2},b∈{0,1,2},求方程的解的個(gè)數(shù)ξ的期望;
(Ⅱ)若a,b在[0,2]內(nèi)等可能取值,求此方程有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案